Sección I: Algunos aspecto del ambiente de Rmarkdown.

Sección II: Tipos de datos en R.

#Ejercicio 1: Crear un secuencia de vectores de 6 a 100 incluidos ambos extremos
#Ejercicio 2: Crear un vector conteniendo los elementos de enteros de -10 a 10 (inclusive), a continuación agregue los elementos del vector c(2,-5,-22) repetido dos veces. Cree un vector con el valor menor y mayor de este vector resultante.
vector6<-seq(from=-10,to=10,by=1)
vector7<-rep(c(2,-5,-22),times=2)
vector8<-sort(c(vector6,vector7))
vector9<-c(vector8[1],vector8[length(vector8)])
x<-12.34
y<-cos(x*12+12)
z<-exp(x)*log(12.3)*(1.23e-8)
vector1<-c(x,y,z)
vector2<-c(vector1,vector1)
vector3<-seq(from=-10,to=10,by=3)
vector4<-seq(from=-10,to=10,length.out=7)
vector5<-rep(c(1,2,3),times=5)
length(vector5)
## [1] 15
sort(vector5)
##  [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
print(vector5)
##  [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
print(vector5[2])
## [1] 2
print(vector5[1:10])
##  [1] 1 2 3 1 2 3 1 2 3 1
print(vector5[c(1,2,5)])
## [1] 1 2 2
#Ejercicio 1: Construya una matriz con los elementos 4.3,3.1,8.2,8.2,3.2,0.9,1.6 y 6.5 por filas y de tamaño 4X2.
#Ejercicio2: Explore la base de datos de R llamada women. Extraiga las primeras 10 filas. Cambie las unidades de pulgadas a metros en la columna de las alturas (1 in=0.0254)m
rm(list=ls())
data("women")
print(women)
##    height weight
## 1      58    115
## 2      59    117
## 3      60    120
## 4      61    123
## 5      62    126
## 6      63    129
## 7      64    132
## 8      65    135
## 9      66    139
## 10     67    142
## 11     68    146
## 12     69    150
## 13     70    154
## 14     71    159
## 15     72    164
Tabla2<-women[1:10,]
Tabla2[,1]<-0.0254*Tabla2[,1]
Tabla2
##    height weight
## 1  1.4732    115
## 2  1.4986    117
## 3  1.5240    120
## 4  1.5494    123
## 5  1.5748    126
## 6  1.6002    129
## 7  1.6256    132
## 8  1.6510    135
## 9  1.6764    139
## 10 1.7018    142
datos<-c(2,3,4,0,1,2,4,5,6,7,8,9)
length(datos)
## [1] 12
Tabla1<-matrix(datos,nrow=3,ncol=4)
Tabla1
##      [,1] [,2] [,3] [,4]
## [1,]    2    0    4    7
## [2,]    3    1    5    8
## [3,]    4    2    6    9
rbind(c(1,2),c(2,3))
##      [,1] [,2]
## [1,]    1    2
## [2,]    2    3
dim(Tabla1)
## [1] 3 4
Tabla1
##      [,1] [,2] [,3] [,4]
## [1,]    2    0    4    7
## [2,]    3    1    5    8
## [3,]    4    2    6    9
Tabla1[c(1,3),c(1,4)]<-0
Tabla1
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    4    0
## [2,]    3    1    5    8
## [3,]    0    2    6    0
#Ejercicio 1: Crear una matriz A de dimension 4X3, llenela en forma de fila por fila, remplace cada elemento igual a 8 por la raiz cuadrada del elemento A[1,2].
rm(list=ls())
Vector1<-c(T,T,T,F,F,F,T)
Vector1
## [1]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
Vector2<-c(1,2,3,4,0,9,8,0)
Vector2[Vector2>0 | Vector2<9]
## [1] 1 2 3 4 0 9 8 0
#Ejercicio 1: Cree un código que permita visualizar la cadena "La multiplicacion de 2 por 3 es 6" donde 2 y 3 estan almacenados en dos variables llamadas num1 y num2. 
#Ejercicio 2: Cree la cadena "Dos paquetes de leche (6 unidades) por 300 lps". A continuación suponga que se quiere actualizar la información a 400 lps y ahora cada paquete tiene 8 leches.
num1<-2
num2<-3
Mensaje1<-paste("La multiplicacion de ",toString(num1))
Mensaje1<-paste(Mensaje1,"por",toString(num2),"es")
Mensaje1<-paste(Mensaje1,toString(num1*num2))
Mensaje1
## [1] "La multiplicacion de  2 por 3 es 6"
Mensaje2<-"Dos paquetes de leche (6 unidades) por 300 lps"
Mensaje2<-sub(pattern = "300",replacement = "400",Mensaje2)
Mensaje2<-sub(pattern = "6",replacement = "8",Mensaje2)
Mensaje2
## [1] "Dos paquetes de leche (8 unidades) por 400 lps"
#cadena1
#cadena2<-paste(cadena1,"Pera","Mango",sep=",")
#cadena3<-substr(cadena2,start=9,stop=12)
#substr(cadena2,start=9,stop=12)<-"Coco"
#cadena2<-sub(pattern = "Coco",replacement = "Sandia",cadena2)
#cadena2
#toString(123.23)

Sección III: Factores. Este es un tipo de dato que nos sirve para manejar datos categóricos. (Datos que se pueden dividir en un conjunto de categorías.)

# Revisa la lista de Bases de datos con el comando:
#data()
#help("Base de datos") pudes ver detalles de la base de datos.
rm(list=ls())
data("esoph")
data("LakeHuron")
esoph
##    agegp     alcgp    tobgp ncases ncontrols
## 1  25-34 0-39g/day 0-9g/day      0        40
## 2  25-34 0-39g/day    10-19      0        10
## 3  25-34 0-39g/day    20-29      0         6
## 4  25-34 0-39g/day      30+      0         5
## 5  25-34     40-79 0-9g/day      0        27
## 6  25-34     40-79    10-19      0         7
## 7  25-34     40-79    20-29      0         4
## 8  25-34     40-79      30+      0         7
## 9  25-34    80-119 0-9g/day      0         2
## 10 25-34    80-119    10-19      0         1
## 11 25-34    80-119      30+      0         2
## 12 25-34      120+ 0-9g/day      0         1
## 13 25-34      120+    10-19      1         0
## 14 25-34      120+    20-29      0         1
## 15 25-34      120+      30+      0         2
## 16 35-44 0-39g/day 0-9g/day      0        60
## 17 35-44 0-39g/day    10-19      1        13
## 18 35-44 0-39g/day    20-29      0         7
## 19 35-44 0-39g/day      30+      0         8
## 20 35-44     40-79 0-9g/day      0        35
## 21 35-44     40-79    10-19      3        20
## 22 35-44     40-79    20-29      1        13
## 23 35-44     40-79      30+      0         8
## 24 35-44    80-119 0-9g/day      0        11
## 25 35-44    80-119    10-19      0         6
## 26 35-44    80-119    20-29      0         2
## 27 35-44    80-119      30+      0         1
## 28 35-44      120+ 0-9g/day      2         1
## 29 35-44      120+    10-19      0         3
## 30 35-44      120+    20-29      2         2
## 31 45-54 0-39g/day 0-9g/day      1        45
## 32 45-54 0-39g/day    10-19      0        18
## 33 45-54 0-39g/day    20-29      0        10
## 34 45-54 0-39g/day      30+      0         4
## 35 45-54     40-79 0-9g/day      6        32
## 36 45-54     40-79    10-19      4        17
## 37 45-54     40-79    20-29      5        10
## 38 45-54     40-79      30+      5         2
## 39 45-54    80-119 0-9g/day      3        13
## 40 45-54    80-119    10-19      6         8
## 41 45-54    80-119    20-29      1         4
## 42 45-54    80-119      30+      2         2
## 43 45-54      120+ 0-9g/day      4         0
## 44 45-54      120+    10-19      3         1
## 45 45-54      120+    20-29      2         1
## 46 45-54      120+      30+      4         0
## 47 55-64 0-39g/day 0-9g/day      2        47
## 48 55-64 0-39g/day    10-19      3        19
## 49 55-64 0-39g/day    20-29      3         9
## 50 55-64 0-39g/day      30+      4         2
## 51 55-64     40-79 0-9g/day      9        31
## 52 55-64     40-79    10-19      6        15
## 53 55-64     40-79    20-29      4        13
## 54 55-64     40-79      30+      3         3
## 55 55-64    80-119 0-9g/day      9         9
## 56 55-64    80-119    10-19      8         7
## 57 55-64    80-119    20-29      3         3
## 58 55-64    80-119      30+      4         0
## 59 55-64      120+ 0-9g/day      5         5
## 60 55-64      120+    10-19      6         1
## 61 55-64      120+    20-29      2         1
## 62 55-64      120+      30+      5         1
## 63 65-74 0-39g/day 0-9g/day      5        43
## 64 65-74 0-39g/day    10-19      4        10
## 65 65-74 0-39g/day    20-29      2         5
## 66 65-74 0-39g/day      30+      0         2
## 67 65-74     40-79 0-9g/day     17        17
## 68 65-74     40-79    10-19      3         7
## 69 65-74     40-79    20-29      5         4
## 70 65-74    80-119 0-9g/day      6         7
## 71 65-74    80-119    10-19      4         8
## 72 65-74    80-119    20-29      2         1
## 73 65-74    80-119      30+      1         0
## 74 65-74      120+ 0-9g/day      3         1
## 75 65-74      120+    10-19      1         1
## 76 65-74      120+    20-29      1         0
## 77 65-74      120+      30+      1         0
## 78   75+ 0-39g/day 0-9g/day      1        17
## 79   75+ 0-39g/day    10-19      2         4
## 80   75+ 0-39g/day      30+      1         2
## 81   75+     40-79 0-9g/day      2         3
## 82   75+     40-79    10-19      1         2
## 83   75+     40-79    20-29      0         3
## 84   75+     40-79      30+      1         0
## 85   75+    80-119 0-9g/day      1         0
## 86   75+    80-119    10-19      1         0
## 87   75+      120+ 0-9g/day      2         0
## 88   75+      120+    10-19      1         0
Edades<-esoph[,1]
Casos<-esoph[,4]
FactorEdades<-factor(Edades)
FactorEdades
##  [1] 25-34 25-34 25-34 25-34 25-34 25-34 25-34 25-34 25-34 25-34 25-34 25-34
## [13] 25-34 25-34 25-34 35-44 35-44 35-44 35-44 35-44 35-44 35-44 35-44 35-44
## [25] 35-44 35-44 35-44 35-44 35-44 35-44 45-54 45-54 45-54 45-54 45-54 45-54
## [37] 45-54 45-54 45-54 45-54 45-54 45-54 45-54 45-54 45-54 45-54 55-64 55-64
## [49] 55-64 55-64 55-64 55-64 55-64 55-64 55-64 55-64 55-64 55-64 55-64 55-64
## [61] 55-64 55-64 65-74 65-74 65-74 65-74 65-74 65-74 65-74 65-74 65-74 65-74
## [73] 65-74 65-74 65-74 65-74 65-74 75+   75+   75+   75+   75+   75+   75+  
## [85] 75+   75+   75+   75+  
## Levels: 25-34 < 35-44 < 45-54 < 55-64 < 65-74 < 75+
levels(FactorEdades)<-c("A","B","C","D","E","F","H")
FactorEdades
##  [1] A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B C C C C C C C C
## [39] C C C C C C C C D D D D D D D D D D D D D D D D E E E E E E E E E E E E E E
## [77] E F F F F F F F F F F F
## Levels: A < B < C < D < E < F < H
Vocales<-c("a","i","a","o","u","u","a")
FactorVocales<-factor(Vocales,levels=c("a","e","i","o","u"),ordered = TRUE)
FactorVocales
## [1] a i a o u u a
## Levels: a < e < i < o < u
FactorVocales[1]<FactorVocales[2]
## [1] TRUE
LakeHuron
## Time Series:
## Start = 1875 
## End = 1972 
## Frequency = 1 
##  [1] 580.38 581.86 580.97 580.80 579.79 580.39 580.42 580.82 581.40 581.32
## [11] 581.44 581.68 581.17 580.53 580.01 579.91 579.14 579.16 579.55 579.67
## [21] 578.44 578.24 579.10 579.09 579.35 578.82 579.32 579.01 579.00 579.80
## [31] 579.83 579.72 579.89 580.01 579.37 578.69 578.19 578.67 579.55 578.92
## [41] 578.09 579.37 580.13 580.14 579.51 579.24 578.66 578.86 578.05 577.79
## [51] 576.75 576.75 577.82 578.64 580.58 579.48 577.38 576.90 576.94 576.24
## [61] 576.84 576.85 576.90 577.79 578.18 577.51 577.23 578.42 579.61 579.05
## [71] 579.26 579.22 579.38 579.10 577.95 578.12 579.75 580.85 580.41 579.96
## [81] 579.61 578.76 578.18 577.21 577.13 579.10 578.25 577.91 576.89 575.96
## [91] 576.80 577.68 578.38 578.52 579.74 579.31 579.89 579.96

Sección IV: Listas : Una lista es un objeto lineal, similar a un vector, con la capacidad de almacenar diferentes tipo de datos.

Vector1<-c(1,2,"Pera",3)
Vector1
## [1] "1"    "2"    "Pera" "3"
Lista1<-list(1,2,3,c("Juan","Maria","Pedro"))
names(Lista1)<-c("N1","N2","N3","Nombres")
Lista1
## $N1
## [1] 1
## 
## $N2
## [1] 2
## 
## $N3
## [1] 3
## 
## $Nombres
## [1] "Juan"  "Maria" "Pedro"
names(Lista1)
## [1] "N1"      "N2"      "N3"      "Nombres"
Lista1$Nombres
## [1] "Juan"  "Maria" "Pedro"

Sección V: DataFrames

#Ejercicio:
#Construya una Data Frame con la siguiente información
#1.Revise que tipo de dato es Titanic con data.class.
#2. Convierta Titanic en una data frame.
#3. Suponga que se quieren actualizar los registros siguientes y usted debe agregarlo (3rd,Female,Child,Yes,1)  y (2nd,Male,Adult,Yes,2)
#4. Ahora suponga que queremos agregar una columna con cbind que indique en español si sobrevivio o no.
#5 Finalmente agregue una columna con la edad de manera que esta sea un factor ordenado y usando el recurso de dolar. 
#6 Filtre la tabla para observar el numero de niños y niñas sobrevivientes por separado.
rm(list=ls())
data("Titanic")
Titanic
## , , Age = Child, Survived = No
## 
##       Sex
## Class  Male Female
##   1st     0      0
##   2nd     0      0
##   3rd    35     17
##   Crew    0      0
## 
## , , Age = Adult, Survived = No
## 
##       Sex
## Class  Male Female
##   1st   118      4
##   2nd   154     13
##   3rd   387     89
##   Crew  670      3
## 
## , , Age = Child, Survived = Yes
## 
##       Sex
## Class  Male Female
##   1st     5      1
##   2nd    11     13
##   3rd    13     14
##   Crew    0      0
## 
## , , Age = Adult, Survived = Yes
## 
##       Sex
## Class  Male Female
##   1st    57    140
##   2nd    14     80
##   3rd    75     76
##   Crew  192     20
Data1<-as.data.frame(Titanic)
Data1
##    Class    Sex   Age Survived Freq
## 1    1st   Male Child       No    0
## 2    2nd   Male Child       No    0
## 3    3rd   Male Child       No   35
## 4   Crew   Male Child       No    0
## 5    1st Female Child       No    0
## 6    2nd Female Child       No    0
## 7    3rd Female Child       No   17
## 8   Crew Female Child       No    0
## 9    1st   Male Adult       No  118
## 10   2nd   Male Adult       No  154
## 11   3rd   Male Adult       No  387
## 12  Crew   Male Adult       No  670
## 13   1st Female Adult       No    4
## 14   2nd Female Adult       No   13
## 15   3rd Female Adult       No   89
## 16  Crew Female Adult       No    3
## 17   1st   Male Child      Yes    5
## 18   2nd   Male Child      Yes   11
## 19   3rd   Male Child      Yes   13
## 20  Crew   Male Child      Yes    0
## 21   1st Female Child      Yes    1
## 22   2nd Female Child      Yes   13
## 23   3rd Female Child      Yes   14
## 24  Crew Female Child      Yes    0
## 25   1st   Male Adult      Yes   57
## 26   2nd   Male Adult      Yes   14
## 27   3rd   Male Adult      Yes   75
## 28  Crew   Male Adult      Yes  192
## 29   1st Female Adult      Yes  140
## 30   2nd Female Adult      Yes   80
## 31   3rd Female Adult      Yes   76
## 32  Crew Female Adult      Yes   20
names(Data1)
## [1] "Class"    "Sex"      "Age"      "Survived" "Freq"
Data2<-data.frame(Class=c("3rd","2nd"),Sex=c("Female","Male"),Age=c("Child","Adult"),Survived=c("Yes","Yes"),Freq=c(1,2))
Data2
##   Class    Sex   Age Survived Freq
## 1   3rd Female Child      Yes    1
## 2   2nd   Male Adult      Yes    2
Data1<-rbind(Data2,Data1)
Data1
##    Class    Sex   Age Survived Freq
## 1    3rd Female Child      Yes    1
## 2    2nd   Male Adult      Yes    2
## 3    1st   Male Child       No    0
## 4    2nd   Male Child       No    0
## 5    3rd   Male Child       No   35
## 6   Crew   Male Child       No    0
## 7    1st Female Child       No    0
## 8    2nd Female Child       No    0
## 9    3rd Female Child       No   17
## 10  Crew Female Child       No    0
## 11   1st   Male Adult       No  118
## 12   2nd   Male Adult       No  154
## 13   3rd   Male Adult       No  387
## 14  Crew   Male Adult       No  670
## 15   1st Female Adult       No    4
## 16   2nd Female Adult       No   13
## 17   3rd Female Adult       No   89
## 18  Crew Female Adult       No    3
## 19   1st   Male Child      Yes    5
## 20   2nd   Male Child      Yes   11
## 21   3rd   Male Child      Yes   13
## 22  Crew   Male Child      Yes    0
## 23   1st Female Child      Yes    1
## 24   2nd Female Child      Yes   13
## 25   3rd Female Child      Yes   14
## 26  Crew Female Child      Yes    0
## 27   1st   Male Adult      Yes   57
## 28   2nd   Male Adult      Yes   14
## 29   3rd   Male Adult      Yes   75
## 30  Crew   Male Adult      Yes  192
## 31   1st Female Adult      Yes  140
## 32   2nd Female Adult      Yes   80
## 33   3rd Female Adult      Yes   76
## 34  Crew Female Adult      Yes   20
Sobreviviente<-Data1$Survived
Sobreviviente[Sobreviviente=="Yes"]<-"Si"
Sobreviviente
##  [1] "Si" "Si" "No" "No" "No" "No" "No" "No" "No" "No" "No" "No" "No" "No" "No"
## [16] "No" "No" "No" "Si" "Si" "Si" "Si" "Si" "Si" "Si" "Si" "Si" "Si" "Si" "Si"
## [31] "Si" "Si" "Si" "Si"
Data1<-cbind(Data1,Sobreviviente)
Data1
##    Class    Sex   Age Survived Freq Sobreviviente
## 1    3rd Female Child      Yes    1            Si
## 2    2nd   Male Adult      Yes    2            Si
## 3    1st   Male Child       No    0            No
## 4    2nd   Male Child       No    0            No
## 5    3rd   Male Child       No   35            No
## 6   Crew   Male Child       No    0            No
## 7    1st Female Child       No    0            No
## 8    2nd Female Child       No    0            No
## 9    3rd Female Child       No   17            No
## 10  Crew Female Child       No    0            No
## 11   1st   Male Adult       No  118            No
## 12   2nd   Male Adult       No  154            No
## 13   3rd   Male Adult       No  387            No
## 14  Crew   Male Adult       No  670            No
## 15   1st Female Adult       No    4            No
## 16   2nd Female Adult       No   13            No
## 17   3rd Female Adult       No   89            No
## 18  Crew Female Adult       No    3            No
## 19   1st   Male Child      Yes    5            Si
## 20   2nd   Male Child      Yes   11            Si
## 21   3rd   Male Child      Yes   13            Si
## 22  Crew   Male Child      Yes    0            Si
## 23   1st Female Child      Yes    1            Si
## 24   2nd Female Child      Yes   13            Si
## 25   3rd Female Child      Yes   14            Si
## 26  Crew Female Child      Yes    0            Si
## 27   1st   Male Adult      Yes   57            Si
## 28   2nd   Male Adult      Yes   14            Si
## 29   3rd   Male Adult      Yes   75            Si
## 30  Crew   Male Adult      Yes  192            Si
## 31   1st Female Adult      Yes  140            Si
## 32   2nd Female Adult      Yes   80            Si
## 33   3rd Female Adult      Yes   76            Si
## 34  Crew Female Adult      Yes   20            Si
Data1$Edad<-factor(Data1$Age)
Data1
##    Class    Sex   Age Survived Freq Sobreviviente  Edad
## 1    3rd Female Child      Yes    1            Si Child
## 2    2nd   Male Adult      Yes    2            Si Adult
## 3    1st   Male Child       No    0            No Child
## 4    2nd   Male Child       No    0            No Child
## 5    3rd   Male Child       No   35            No Child
## 6   Crew   Male Child       No    0            No Child
## 7    1st Female Child       No    0            No Child
## 8    2nd Female Child       No    0            No Child
## 9    3rd Female Child       No   17            No Child
## 10  Crew Female Child       No    0            No Child
## 11   1st   Male Adult       No  118            No Adult
## 12   2nd   Male Adult       No  154            No Adult
## 13   3rd   Male Adult       No  387            No Adult
## 14  Crew   Male Adult       No  670            No Adult
## 15   1st Female Adult       No    4            No Adult
## 16   2nd Female Adult       No   13            No Adult
## 17   3rd Female Adult       No   89            No Adult
## 18  Crew Female Adult       No    3            No Adult
## 19   1st   Male Child      Yes    5            Si Child
## 20   2nd   Male Child      Yes   11            Si Child
## 21   3rd   Male Child      Yes   13            Si Child
## 22  Crew   Male Child      Yes    0            Si Child
## 23   1st Female Child      Yes    1            Si Child
## 24   2nd Female Child      Yes   13            Si Child
## 25   3rd Female Child      Yes   14            Si Child
## 26  Crew Female Child      Yes    0            Si Child
## 27   1st   Male Adult      Yes   57            Si Adult
## 28   2nd   Male Adult      Yes   14            Si Adult
## 29   3rd   Male Adult      Yes   75            Si Adult
## 30  Crew   Male Adult      Yes  192            Si Adult
## 31   1st Female Adult      Yes  140            Si Adult
## 32   2nd Female Adult      Yes   80            Si Adult
## 33   3rd Female Adult      Yes   76            Si Adult
## 34  Crew Female Adult      Yes   20            Si Adult
Edad<-"Adult"
HS<-sum(Data1[Data1$Sex=="Male" & Data1$Age==Edad & Data1$Survived=="Yes",]$Freq)
HN<-sum(Data1[Data1$Sex=="Male" & Data1$Age==Edad & Data1$Survived=="No",]$Freq)
MS<-sum(Data1[Data1$Sex=="Female" & Data1$Age==Edad & Data1$Survived=="Yes",]$Freq)
MN<-sum(Data1[Data1$Sex=="Female" & Data1$Age==Edad & Data1$Survived=="No",]$Freq)
print(paste("Hombres sobrevivientes:",as.character(HS)))
## [1] "Hombres sobrevivientes: 340"
print(paste("Hombres No sobrevivientes:",HN))
## [1] "Hombres No sobrevivientes: 1329"
print(paste("Mujeres sobrevivientes:",MS))
## [1] "Mujeres sobrevivientes: 316"
print(paste("Mujeres No sobrevivientes:",MN))
## [1] "Mujeres No sobrevivientes: 109"

Sección VI: Gráficos en R

rm(list=ls())
x<-seq(from=-3.14,to=3.14,length.out=20)
y<-sin(x)
colores<-seq(from=1,to=4,by=1);
plot(x,y,type="b",main="Funcion Seno",xlab="Dominio",ylab="Rango",col=colores,lty=4,pch=c(1,2,3,4,5),cex=1.5,lwd=1.5,xlim=c(-4,4),ylim=c(-1.1,1.1))
points(x=0,y=0,pch=2,cex=2)
text(x=0,y=0,"Origen")
legend("topleft",legend =c("Funcion seno","Funcion seno","Funcion seno","Funcion seno"),pch=colores,lty=4)

Asignación de la semana.

  1. Crear un archivo R Markdown.
  2. Crear una cuenta en RPubs y guardar este archivo.
  3. Cargue la librería tree
  4. Cree un data.frame a partir de los datos de tree con el siguiente filtro: “deseamos los árboles con una altura entre 70 y 80 pies y un diámetro de menos de 13 pugadas”. Guarde esta data.frame en una varaible que se llame Arboles .
  5. Cree un gráfico de puntos (cuadrados) de el diámetro vs altura. Ponga como título Altura y Ancho de Árboles Cherry Negros. En los ejes deben aparecer las respectivas unidades (diámetro (pulgadas), altura (pies)). Agregue color verde a los puntos que se encuentran en el filtro del inciso 4. Y los puntos que no cumplan con esas especificaciones que se mantengan en color negro. Agregue una leyenda que diga "Diametro vs Altura".
  6. En el campus virtual se habilitará un espacio para que copien la dirección de la publicación en Rpub donde tienen el trabajo, agreguen al inicio su información personal, como nombre y números de cuenta.
library(ggplot2)
x<-seq(from=acos(-1),to=-acos(-1),length.out=40)
y<-sin(x)
Grafico<-qplot(x,y,main="funcion Seno",xlab="Dominio",ylab="Rango",geom="blank")+geom_point(size=3,shape=2,color="red")+geom_line(color="blue",linetype=2)
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Grafico+geom_point()

y1<-rep(NA,40)
y1[y>=0]<-"Primer Cuadrante"
y1[y<0]<-"Tercer Cuadrante"
y1<-factor(y1)
qplot(x,y,color=y1,shape=y1)+geom_line()+geom_point(size=3)

Sección VII: Lectura y escritura de archivos.

rm(list=ls())
Archivo<-read.table(file="Data_Nutricion.txt",header=TRUE,sep = " ",na.strings = "Na")
Archivo
##     Fruta Potasio.mg. V_A.µg. V_B.mg. Kcal Carb.g.
## 1 Manzana         107      54   0.041   52      14
## 2    Pera         116      25   0.026   57      15
## 3  Banano         358      64   0.334   89      23
## 4  Sandía         112      28   0.033   30      NA
## 5   Fresa         153      12   0.024   32       8
## 6    Kiwi         312      87   0.063   61      15
Archivo1<-read.csv(file="DatosVIH.csv",header=T,na.strings="..")
Archivo1
##                                                          Series.Name
## 1        Adults (ages 15+) and children (0-14 years) living with HIV
## 2 Adults (ages 15+) and children (ages 0-14) newly infected with HIV
## 3                                  Adults (ages 15+) living with HIV
## 4                        Adults (ages 15-49) newly infected with HIV
## 5                                                                   
## 6                                                                   
## 7                                                                   
## 8     Data from database: Health Nutrition and Population Statistics
## 9                                           Last Updated: 07/01/2024
##      Series.Code Country.Name Country.Code X1960..YR1960. X1961..YR1961.
## 1    SH.HIV.TOTL     Honduras          HND             NA             NA
## 2 SH.HIV.INCD.TL     Honduras          HND             NA             NA
## 3    SH.DYN.AIDS     Honduras          HND             NA             NA
## 4    SH.HIV.INCD     Honduras          HND             NA             NA
## 5                                                      NA             NA
## 6                                                      NA             NA
## 7                                                      NA             NA
## 8                                                      NA             NA
## 9                                                      NA             NA
##   X1962..YR1962. X1963..YR1963. X1964..YR1964. X1965..YR1965. X1966..YR1966.
## 1             NA             NA             NA             NA             NA
## 2             NA             NA             NA             NA             NA
## 3             NA             NA             NA             NA             NA
## 4             NA             NA             NA             NA             NA
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1967..YR1967. X1968..YR1968. X1969..YR1969. X1970..YR1970. X1971..YR1971.
## 1             NA             NA             NA             NA             NA
## 2             NA             NA             NA             NA             NA
## 3             NA             NA             NA             NA             NA
## 4             NA             NA             NA             NA             NA
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1972..YR1972. X1973..YR1973. X1974..YR1974. X1975..YR1975. X1976..YR1976.
## 1             NA             NA             NA             NA             NA
## 2             NA             NA             NA             NA             NA
## 3             NA             NA             NA             NA             NA
## 4             NA             NA             NA             NA             NA
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1977..YR1977. X1978..YR1978. X1979..YR1979. X1980..YR1980. X1981..YR1981.
## 1             NA             NA             NA             NA             NA
## 2             NA             NA             NA             NA             NA
## 3             NA             NA             NA             NA             NA
## 4             NA             NA             NA             NA             NA
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1982..YR1982. X1983..YR1983. X1984..YR1984. X1985..YR1985. X1986..YR1986.
## 1             NA             NA             NA             NA             NA
## 2             NA             NA             NA             NA             NA
## 3             NA             NA             NA             NA             NA
## 4             NA             NA             NA             NA             NA
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1987..YR1987. X1988..YR1988. X1989..YR1989. X1990..YR1990. X1991..YR1991.
## 1             NA             NA             NA          11000          13000
## 2             NA             NA             NA           2900           3400
## 3             NA             NA             NA          10000          12000
## 4             NA             NA             NA           2400           2800
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1992..YR1992. X1993..YR1993. X1994..YR1994. X1995..YR1995. X1996..YR1996.
## 1          16000          20000          23000          26000          28000
## 2           3900           4300           4600           4600           4600
## 3          15000          18000          21000          23000          26000
## 4           3200           3500           3700           3700           3600
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X1997..YR1997. X1998..YR1998. X1999..YR1999. X2000..YR2000. X2001..YR2001.
## 1          31000          32000          33000          34000          34000
## 2           4400           4100           3700           3300           2800
## 3          28000          29000          30000          31000          30000
## 4           3400           3100           2800           2400           2000
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X2002..YR2002. X2003..YR2003. X2004..YR2004. X2005..YR2005. X2006..YR2006.
## 1          33000          33000          32000          31000          30000
## 2           2400           2000           1600           1300           1100
## 3          30000          29000          28000          27000          27000
## 4           1700           1400           1000           1000           1000
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X2007..YR2007. X2008..YR2008. X2009..YR2009. X2010..YR2010. X2011..YR2011.
## 1          29000          28000          27000          26000          25000
## 2            840            750            600            600            570
## 3          26000          25000          24000          23000          22000
## 4           1000            500            500            500            500
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X2012..YR2012. X2013..YR2013. X2014..YR2014. X2015..YR2015. X2016..YR2016.
## 1          24000          23000          23000          22000          21000
## 2            530            500            500            500            550
## 3          22000          21000          21000          20000          20000
## 4            500            500            500            500            500
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X2017..YR2017. X2018..YR2018. X2019..YR2019. X2020..YR2020. X2021..YR2021.
## 1          21000          21000          20000          20000          20000
## 2            510            530            540            550            590
## 3          20000          19000          19000          19000          19000
## 4            500            500            500            500            500
## 5             NA             NA             NA             NA             NA
## 6             NA             NA             NA             NA             NA
## 7             NA             NA             NA             NA             NA
## 8             NA             NA             NA             NA             NA
## 9             NA             NA             NA             NA             NA
##   X2022..YR2022. X2023..YR2023.
## 1          20000             NA
## 2            560             NA
## 3          19000             NA
## 4            500             NA
## 5             NA             NA
## 6             NA             NA
## 7             NA             NA
## 8             NA             NA
## 9             NA             NA
names(Archivo1)
##  [1] "Series.Name"    "Series.Code"    "Country.Name"   "Country.Code"  
##  [5] "X1960..YR1960." "X1961..YR1961." "X1962..YR1962." "X1963..YR1963."
##  [9] "X1964..YR1964." "X1965..YR1965." "X1966..YR1966." "X1967..YR1967."
## [13] "X1968..YR1968." "X1969..YR1969." "X1970..YR1970." "X1971..YR1971."
## [17] "X1972..YR1972." "X1973..YR1973." "X1974..YR1974." "X1975..YR1975."
## [21] "X1976..YR1976." "X1977..YR1977." "X1978..YR1978." "X1979..YR1979."
## [25] "X1980..YR1980." "X1981..YR1981." "X1982..YR1982." "X1983..YR1983."
## [29] "X1984..YR1984." "X1985..YR1985." "X1986..YR1986." "X1987..YR1987."
## [33] "X1988..YR1988." "X1989..YR1989." "X1990..YR1990." "X1991..YR1991."
## [37] "X1992..YR1992." "X1993..YR1993." "X1994..YR1994." "X1995..YR1995."
## [41] "X1996..YR1996." "X1997..YR1997." "X1998..YR1998." "X1999..YR1999."
## [45] "X2000..YR2000." "X2001..YR2001." "X2002..YR2002." "X2003..YR2003."
## [49] "X2004..YR2004." "X2005..YR2005." "X2006..YR2006." "X2007..YR2007."
## [53] "X2008..YR2008." "X2009..YR2009." "X2010..YR2010." "X2011..YR2011."
## [57] "X2012..YR2012." "X2013..YR2013." "X2014..YR2014." "X2015..YR2015."
## [61] "X2016..YR2016." "X2017..YR2017." "X2018..YR2018." "X2019..YR2019."
## [65] "X2020..YR2020." "X2021..YR2021." "X2022..YR2022." "X2023..YR2023."
Anio<-seq(from=1960,to=2023,by=1)
Etiquetas<-c("Nombre","Codigo","Pais","Cod.Pais",Anio)
names(Archivo1)<-Etiquetas
Archivo1
##                                                               Nombre
## 1        Adults (ages 15+) and children (0-14 years) living with HIV
## 2 Adults (ages 15+) and children (ages 0-14) newly infected with HIV
## 3                                  Adults (ages 15+) living with HIV
## 4                        Adults (ages 15-49) newly infected with HIV
## 5                                                                   
## 6                                                                   
## 7                                                                   
## 8     Data from database: Health Nutrition and Population Statistics
## 9                                           Last Updated: 07/01/2024
##           Codigo     Pais Cod.Pais 1960 1961 1962 1963 1964 1965 1966 1967 1968
## 1    SH.HIV.TOTL Honduras      HND   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 2 SH.HIV.INCD.TL Honduras      HND   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 3    SH.DYN.AIDS Honduras      HND   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 4    SH.HIV.INCD Honduras      HND   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 5                                    NA   NA   NA   NA   NA   NA   NA   NA   NA
## 6                                    NA   NA   NA   NA   NA   NA   NA   NA   NA
## 7                                    NA   NA   NA   NA   NA   NA   NA   NA   NA
## 8                                    NA   NA   NA   NA   NA   NA   NA   NA   NA
## 9                                    NA   NA   NA   NA   NA   NA   NA   NA   NA
##   1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
## 1   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 2   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 3   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 4   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 5   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 6   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 7   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 8   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 9   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
##   1984 1985 1986 1987 1988 1989  1990  1991  1992  1993  1994  1995  1996  1997
## 1   NA   NA   NA   NA   NA   NA 11000 13000 16000 20000 23000 26000 28000 31000
## 2   NA   NA   NA   NA   NA   NA  2900  3400  3900  4300  4600  4600  4600  4400
## 3   NA   NA   NA   NA   NA   NA 10000 12000 15000 18000 21000 23000 26000 28000
## 4   NA   NA   NA   NA   NA   NA  2400  2800  3200  3500  3700  3700  3600  3400
## 5   NA   NA   NA   NA   NA   NA    NA    NA    NA    NA    NA    NA    NA    NA
## 6   NA   NA   NA   NA   NA   NA    NA    NA    NA    NA    NA    NA    NA    NA
## 7   NA   NA   NA   NA   NA   NA    NA    NA    NA    NA    NA    NA    NA    NA
## 8   NA   NA   NA   NA   NA   NA    NA    NA    NA    NA    NA    NA    NA    NA
## 9   NA   NA   NA   NA   NA   NA    NA    NA    NA    NA    NA    NA    NA    NA
##    1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010
## 1 32000 33000 34000 34000 33000 33000 32000 31000 30000 29000 28000 27000 26000
## 2  4100  3700  3300  2800  2400  2000  1600  1300  1100   840   750   600   600
## 3 29000 30000 31000 30000 30000 29000 28000 27000 27000 26000 25000 24000 23000
## 4  3100  2800  2400  2000  1700  1400  1000  1000  1000  1000   500   500   500
## 5    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 6    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 7    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 8    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 9    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
##    2011  2012  2013  2014  2015  2016  2017  2018  2019  2020  2021  2022 2023
## 1 25000 24000 23000 23000 22000 21000 21000 21000 20000 20000 20000 20000   NA
## 2   570   530   500   500   500   550   510   530   540   550   590   560   NA
## 3 22000 22000 21000 21000 20000 20000 20000 19000 19000 19000 19000 19000   NA
## 4   500   500   500   500   500   500   500   500   500   500   500   500   NA
## 5    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA   NA
## 6    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA   NA
## 7    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA   NA
## 8    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA   NA
## 9    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA   NA
#Ejercicio: Hacer unu grafico de años vs casos de VIH.
Dominio<-1990:2022
Imagen<-Archivo1[1,5:ncol(Archivo1)]
Imagen<-Imagen[!is.na(Imagen[1,])]
class(Imagen)
## [1] "integer"
plot(Dominio,Imagen,type="b",main="Casos de VIH",xlab="Años",ylab="Casos")

library(readxl)
Escolaridad<-read_excel("DatosCompletoPrimeria.xls",skip=3,col_names = TRUE,sheet = 2)
FiltroHND<-Escolaridad$`Country Code`=='HND'
HND<-Escolaridad[FiltroHND,]
HND<-HND[1,5:ncol(HND)]
Filtro<-as.logical(!is.na(HND[1,]))
HND<-HND[1,Filtro]
FiltroGTM<-(Escolaridad$`Country Code`=='GTM')
GTM<-Escolaridad[FiltroGTM,]
GTM<-GTM[1,5:ncol(GTM)]
Filtro<-as.logical(!is.na(GTM[1,]))
GTM<-GTM[1,Filtro]
FiltroSLV<-(Escolaridad$`Country Code`=='SLV')
SLV<-Escolaridad[FiltroSLV,]
SLV<-SLV[1,5:ncol(SLV)]
Filtro<-as.logical(!is.na(SLV[1,]))
SLV<-SLV[1,Filtro]
FiltroCRI<-(Escolaridad$`Country Code`=='CRI')
CRI<-Escolaridad[FiltroCRI,]
CRI<-CRI[1,5:ncol(CRI)]
Filtro<-as.logical(!is.na(CRI[1,]))
CRI<-CRI[1,Filtro]
FiltroPAN<-(Escolaridad$`Country Code`=='PAN')
PAN<-Escolaridad[FiltroPAN,]
PAN<-PAN[1,5:ncol(PAN)]
Filtro<-as.logical(!is.na(PAN[1,]))
PAN<-PAN[1,Filtro]
FiltroBLZ<-(Escolaridad$`Country Code`=='BLZ')
BLZ<-Escolaridad[FiltroBLZ,]
BLZ<-BLZ[1,5:ncol(BLZ)]
Filtro<-as.logical(!is.na(BLZ[1,]))
BLZ<-BLZ[1,Filtro]
FiltroNIC<-(Escolaridad$`Country Code`=='NIC')
NIC<-Escolaridad[FiltroNIC,]
NIC<-NIC[1,5:ncol(NIC)]
Filtro<-as.logical(!is.na(NIC[1,]))
NIC<-NIC[1,Filtro]
Porcentajes<-c(HND,SLV,GTM,CRI,PAN,BLZ,NIC)
Factor<-c(rep("HND",length(HND)),rep("SLV",length(SLV)))
Factor<-c(Factor,rep("GTM",length(GTM)),rep("CRI",length(CRI)))
Factor<-c(Factor,rep("PAN",length(PAN)),rep("BLZ",length(BLZ)))
Factor<-c(Factor,rep("NIC",length(NIC)))
Factor<-factor(Factor)
DHND<-as.integer(names(HND))
DSLV<-as.integer(names(SLV))
DGTM<-as.integer(names(GTM))
DCRI<-as.integer(names(CRI))
DPAN<-as.integer(names(PAN))
DBLZ<-as.integer(names(BLZ))
DNIC<-as.integer(names(NIC))
Dominio<-c(DHND,DSLV,DGTM,DCRI,DPAN,DBLZ,DNIC)
library(ggplot2)
Porcentajes<-as.numeric(Porcentajes)
qplot(Dominio,Porcentajes,color=Factor,shape=Factor,main="Porcentaje de escolaridad completa en Centro América",xlab = "Años",ylab="Porcentajes")+geom_line()
## Warning: The shape palette can deal with a maximum of 6 discrete values because more
## than 6 becomes difficult to discriminate
## ℹ you have requested 7 values. Consider specifying shapes manually if you need
##   that many have them.
## Warning: Removed 35 rows containing missing values or values outside the scale range
## (`geom_point()`).

Sección VIII: Elementos Básicos de Estadística

#Ejercicio: Hacer uso de todas las fuciones anteriores con la data trees.   
data("trees")
trees
##    Girth Height Volume
## 1    8.3     70   10.3
## 2    8.6     65   10.3
## 3    8.8     63   10.2
## 4   10.5     72   16.4
## 5   10.7     81   18.8
## 6   10.8     83   19.7
## 7   11.0     66   15.6
## 8   11.0     75   18.2
## 9   11.1     80   22.6
## 10  11.2     75   19.9
## 11  11.3     79   24.2
## 12  11.4     76   21.0
## 13  11.4     76   21.4
## 14  11.7     69   21.3
## 15  12.0     75   19.1
## 16  12.9     74   22.2
## 17  12.9     85   33.8
## 18  13.3     86   27.4
## 19  13.7     71   25.7
## 20  13.8     64   24.9
## 21  14.0     78   34.5
## 22  14.2     80   31.7
## 23  14.5     74   36.3
## 24  16.0     72   38.3
## 25  16.3     77   42.6
## 26  17.3     81   55.4
## 27  17.5     82   55.7
## 28  17.9     80   58.3
## 29  18.0     80   51.5
## 30  18.0     80   51.0
## 31  20.6     87   77.0
mean(trees$Volume)
## [1] 30.17097
median(trees$Volume)
## [1] 24.2
min(trees$Volume)
## [1] 10.2
max(trees$Volume)
## [1] 77
range(trees$Volume)
## [1] 10.2 77.0
table(trees$Volume)
## 
## 10.2 10.3 15.6 16.4 18.2 18.8 19.1 19.7 19.9   21 21.3 21.4 22.2 22.6 24.2 24.9 
##    1    2    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 25.7 27.4 31.7 33.8 34.5 36.3 38.3 42.6   51 51.5 55.4 55.7 58.3   77 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1
summary(trees$Volume)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.20   19.40   24.20   30.17   37.30   77.00
quantile(trees$Volume,probs = 0.123)
##  12.3% 
## 16.152
#Uso de la funcion tapply. 
Genero<-c('H','M','M','H','H','M')
#Altura en metros
Altura<-c(1.6,1.7,1.5,1.9,1.85,1.65)
FGenero<-factor(Genero)
FGenero
## [1] H M M H H M
## Levels: H M
X<-tapply(Altura,INDEX = FGenero,FUN=median)
X
##    H    M 
## 1.85 1.65
var(trees$Volume)
## [1] 270.2028
sd(trees$Volume)
## [1] 16.43785
plot(trees$Girth,trees$Volume)

plot(trees$Girth,trees$Height)

cor(trees$Girth,trees$Volume)
## [1] 0.9671194
cor(trees$Girth,trees$Height)
## [1] 0.5192801

Sección IX: Visualización de Datos

  1. Gráfico de barra (Barplots) y de pastel (Pie Charts)

  2. Para construir un gráfico de barra seguimos los siguientes procedimientos:

    1. Creamos la tabla de frecuencias de x con freq<-table(x).

    2. Luego usamos barplot(freq). Algunos parámetros que se pueden ajustar:

      1. Es posible colocar tablas de más filas en el lugar de freq.

      2. beside: Ajusta si quieres que las barras aparezcan juntas (TRUE) o una encima de la otra (FALSE)

      3. horiz: Si es TRUE entonces las barras se mostrarán en horizontal.

      4. legend.text: Ajusta las leyendas, puede colocarse un vector de cadenas.

      5. args.legend: Una lista con una cadena que permita ajustar la ubicación de las leyendas.

        1. main: Título.
#Hacer un barplot con la base de datos ToothGrowth.
data("ToothGrowth")
ToothGrowth
##     len supp dose
## 1   4.2   VC  0.5
## 2  11.5   VC  0.5
## 3   7.3   VC  0.5
## 4   5.8   VC  0.5
## 5   6.4   VC  0.5
## 6  10.0   VC  0.5
## 7  11.2   VC  0.5
## 8  11.2   VC  0.5
## 9   5.2   VC  0.5
## 10  7.0   VC  0.5
## 11 16.5   VC  1.0
## 12 16.5   VC  1.0
## 13 15.2   VC  1.0
## 14 17.3   VC  1.0
## 15 22.5   VC  1.0
## 16 17.3   VC  1.0
## 17 13.6   VC  1.0
## 18 14.5   VC  1.0
## 19 18.8   VC  1.0
## 20 15.5   VC  1.0
## 21 23.6   VC  2.0
## 22 18.5   VC  2.0
## 23 33.9   VC  2.0
## 24 25.5   VC  2.0
## 25 26.4   VC  2.0
## 26 32.5   VC  2.0
## 27 26.7   VC  2.0
## 28 21.5   VC  2.0
## 29 23.3   VC  2.0
## 30 29.5   VC  2.0
## 31 15.2   OJ  0.5
## 32 21.5   OJ  0.5
## 33 17.6   OJ  0.5
## 34  9.7   OJ  0.5
## 35 14.5   OJ  0.5
## 36 10.0   OJ  0.5
## 37  8.2   OJ  0.5
## 38  9.4   OJ  0.5
## 39 16.5   OJ  0.5
## 40  9.7   OJ  0.5
## 41 19.7   OJ  1.0
## 42 23.3   OJ  1.0
## 43 23.6   OJ  1.0
## 44 26.4   OJ  1.0
## 45 20.0   OJ  1.0
## 46 25.2   OJ  1.0
## 47 25.8   OJ  1.0
## 48 21.2   OJ  1.0
## 49 14.5   OJ  1.0
## 50 27.3   OJ  1.0
## 51 25.5   OJ  2.0
## 52 26.4   OJ  2.0
## 53 22.4   OJ  2.0
## 54 24.5   OJ  2.0
## 55 24.8   OJ  2.0
## 56 30.9   OJ  2.0
## 57 26.4   OJ  2.0
## 58 27.3   OJ  2.0
## 59 29.4   OJ  2.0
## 60 23.0   OJ  2.0
Freq<-table(ToothGrowth$supp)
Freq
## 
## OJ VC 
## 30 30
barplot(Freq)

#Segundo Ejemplo
X<-c(1,0,0,1,0,1,0,0,1)
Y<-c(2,3,4,3,2,4,3,3,1)
Freq<-table(X,Y)
Freq
##    Y
## X   1 2 3 4
##   0 0 1 3 1
##   1 1 1 1 1
barplot(Freq,beside=TRUE,legend.text = c("Etiqueta cero","Etiqueta 1"))

Asignación 3 de R:

  1. Explorar la base de datos ChickWeight y familiarizarse con esas mediciones.
  2. Crear cuatro tablas llamadas dieta1, dieta2, dieta3 y dieta4; cada tabla es un filtro de la base de datos de acuerdo al tipo de dieta.
  3. Crear 4 factores, factor1, factor2, factor3, factor4; estos factores se construirán a partir de la columna Time de cada tabla construida anteriormente; por ejemplo factor2 sería el factor construido a partir de dieta2.
  4. Con ayuda de la función tappy construya las 4 tablas de los promedios de los pesos diarios de los pollitos de acuerdo a cada dieta. Convierta estas salidas a un vector numérico.
  5. Con esta información en mano, construya el gráfico que se mira a continuación.
##     weight Time Chick Diet
## 578    264   21    50    4
##     weight Time Chick Diet
## 1       42    0     1    1
## 2       51    2     1    1
## 3       59    4     1    1
## 4       64    6     1    1
## 5       76    8     1    1
## 6       93   10     1    1
## 7      106   12     1    1
## 8      125   14     1    1
## 9      149   16     1    1
## 10     171   18     1    1
## 11     199   20     1    1
## 12     205   21     1    1
## 13      40    0     2    1
## 14      49    2     2    1
## 15      58    4     2    1
## 16      72    6     2    1
## 17      84    8     2    1
## 18     103   10     2    1
## 19     122   12     2    1
## 20     138   14     2    1
## 21     162   16     2    1
## 22     187   18     2    1
## 23     209   20     2    1
## 24     215   21     2    1
## 25      43    0     3    1
## 26      39    2     3    1
## 27      55    4     3    1
## 28      67    6     3    1
## 29      84    8     3    1
## 30      99   10     3    1
## 31     115   12     3    1
## 32     138   14     3    1
## 33     163   16     3    1
## 34     187   18     3    1
## 35     198   20     3    1
## 36     202   21     3    1
## 37      42    0     4    1
## 38      49    2     4    1
## 39      56    4     4    1
## 40      67    6     4    1
## 41      74    8     4    1
## 42      87   10     4    1
## 43     102   12     4    1
## 44     108   14     4    1
## 45     136   16     4    1
## 46     154   18     4    1
## 47     160   20     4    1
## 48     157   21     4    1
## 49      41    0     5    1
## 50      42    2     5    1
## 51      48    4     5    1
## 52      60    6     5    1
## 53      79    8     5    1
## 54     106   10     5    1
## 55     141   12     5    1
## 56     164   14     5    1
## 57     197   16     5    1
## 58     199   18     5    1
## 59     220   20     5    1
## 60     223   21     5    1
## 61      41    0     6    1
## 62      49    2     6    1
## 63      59    4     6    1
## 64      74    6     6    1
## 65      97    8     6    1
## 66     124   10     6    1
## 67     141   12     6    1
## 68     148   14     6    1
## 69     155   16     6    1
## 70     160   18     6    1
## 71     160   20     6    1
## 72     157   21     6    1
## 73      41    0     7    1
## 74      49    2     7    1
## 75      57    4     7    1
## 76      71    6     7    1
## 77      89    8     7    1
## 78     112   10     7    1
## 79     146   12     7    1
## 80     174   14     7    1
## 81     218   16     7    1
## 82     250   18     7    1
## 83     288   20     7    1
## 84     305   21     7    1
## 85      42    0     8    1
## 86      50    2     8    1
## 87      61    4     8    1
## 88      71    6     8    1
## 89      84    8     8    1
## 90      93   10     8    1
## 91     110   12     8    1
## 92     116   14     8    1
## 93     126   16     8    1
## 94     134   18     8    1
## 95     125   20     8    1
## 96      42    0     9    1
## 97      51    2     9    1
## 98      59    4     9    1
## 99      68    6     9    1
## 100     85    8     9    1
## 101     96   10     9    1
## 102     90   12     9    1
## 103     92   14     9    1
## 104     93   16     9    1
## 105    100   18     9    1
## 106    100   20     9    1
## 107     98   21     9    1
## 108     41    0    10    1
## 109     44    2    10    1
## 110     52    4    10    1
## 111     63    6    10    1
## 112     74    8    10    1
## 113     81   10    10    1
## 114     89   12    10    1
## 115     96   14    10    1
## 116    101   16    10    1
## 117    112   18    10    1
## 118    120   20    10    1
## 119    124   21    10    1
## 120     43    0    11    1
## 121     51    2    11    1
## 122     63    4    11    1
## 123     84    6    11    1
## 124    112    8    11    1
## 125    139   10    11    1
## 126    168   12    11    1
## 127    177   14    11    1
## 128    182   16    11    1
## 129    184   18    11    1
## 130    181   20    11    1
## 131    175   21    11    1
## 132     41    0    12    1
## 133     49    2    12    1
## 134     56    4    12    1
## 135     62    6    12    1
## 136     72    8    12    1
## 137     88   10    12    1
## 138    119   12    12    1
## 139    135   14    12    1
## 140    162   16    12    1
## 141    185   18    12    1
## 142    195   20    12    1
## 143    205   21    12    1
## 144     41    0    13    1
## 145     48    2    13    1
## 146     53    4    13    1
## 147     60    6    13    1
## 148     65    8    13    1
## 149     67   10    13    1
## 150     71   12    13    1
## 151     70   14    13    1
## 152     71   16    13    1
## 153     81   18    13    1
## 154     91   20    13    1
## 155     96   21    13    1
## 156     41    0    14    1
## 157     49    2    14    1
## 158     62    4    14    1
## 159     79    6    14    1
## 160    101    8    14    1
## 161    128   10    14    1
## 162    164   12    14    1
## 163    192   14    14    1
## 164    227   16    14    1
## 165    248   18    14    1
## 166    259   20    14    1
## 167    266   21    14    1
## 168     41    0    15    1
## 169     49    2    15    1
## 170     56    4    15    1
## 171     64    6    15    1
## 172     68    8    15    1
## 173     68   10    15    1
## 174     67   12    15    1
## 175     68   14    15    1
## 176     41    0    16    1
## 177     45    2    16    1
## 178     49    4    16    1
## 179     51    6    16    1
## 180     57    8    16    1
## 181     51   10    16    1
## 182     54   12    16    1
## 183     42    0    17    1
## 184     51    2    17    1
## 185     61    4    17    1
## 186     72    6    17    1
## 187     83    8    17    1
## 188     89   10    17    1
## 189     98   12    17    1
## 190    103   14    17    1
## 191    113   16    17    1
## 192    123   18    17    1
## 193    133   20    17    1
## 194    142   21    17    1
## 195     39    0    18    1
## 196     35    2    18    1
## 197     43    0    19    1
## 198     48    2    19    1
## 199     55    4    19    1
## 200     62    6    19    1
## 201     65    8    19    1
## 202     71   10    19    1
## 203     82   12    19    1
## 204     88   14    19    1
## 205    106   16    19    1
## 206    120   18    19    1
## 207    144   20    19    1
## 208    157   21    19    1
## 209     41    0    20    1
## 210     47    2    20    1
## 211     54    4    20    1
## 212     58    6    20    1
## 213     65    8    20    1
## 214     73   10    20    1
## 215     77   12    20    1
## 216     89   14    20    1
## 217     98   16    20    1
## 218    107   18    20    1
## 219    115   20    20    1
## 220    117   21    20    1
## 221     40    0    21    2
## 222     50    2    21    2
## 223     62    4    21    2
## 224     86    6    21    2
## 225    125    8    21    2
## 226    163   10    21    2
## 227    217   12    21    2
## 228    240   14    21    2
## 229    275   16    21    2
## 230    307   18    21    2
## 231    318   20    21    2
## 232    331   21    21    2
## 233     41    0    22    2
## 234     55    2    22    2
## 235     64    4    22    2
## 236     77    6    22    2
## 237     90    8    22    2
## 238     95   10    22    2
## 239    108   12    22    2
## 240    111   14    22    2
## 241    131   16    22    2
## 242    148   18    22    2
## 243    164   20    22    2
## 244    167   21    22    2
## 245     43    0    23    2
## 246     52    2    23    2
## 247     61    4    23    2
## 248     73    6    23    2
## 249     90    8    23    2
## 250    103   10    23    2
## 251    127   12    23    2
## 252    135   14    23    2
## 253    145   16    23    2
## 254    163   18    23    2
## 255    170   20    23    2
## 256    175   21    23    2
## 257     42    0    24    2
## 258     52    2    24    2
## 259     58    4    24    2
## 260     74    6    24    2
## 261     66    8    24    2
## 262     68   10    24    2
## 263     70   12    24    2
## 264     71   14    24    2
## 265     72   16    24    2
## 266     72   18    24    2
## 267     76   20    24    2
## 268     74   21    24    2
## 269     40    0    25    2
## 270     49    2    25    2
## 271     62    4    25    2
## 272     78    6    25    2
## 273    102    8    25    2
## 274    124   10    25    2
## 275    146   12    25    2
## 276    164   14    25    2
## 277    197   16    25    2
## 278    231   18    25    2
## 279    259   20    25    2
## 280    265   21    25    2
## 281     42    0    26    2
## 282     48    2    26    2
## 283     57    4    26    2
## 284     74    6    26    2
## 285     93    8    26    2
## 286    114   10    26    2
## 287    136   12    26    2
## 288    147   14    26    2
## 289    169   16    26    2
## 290    205   18    26    2
## 291    236   20    26    2
## 292    251   21    26    2
## 293     39    0    27    2
## 294     46    2    27    2
## 295     58    4    27    2
## 296     73    6    27    2
## 297     87    8    27    2
## 298    100   10    27    2
## 299    115   12    27    2
## 300    123   14    27    2
## 301    144   16    27    2
## 302    163   18    27    2
## 303    185   20    27    2
## 304    192   21    27    2
## 305     39    0    28    2
## 306     46    2    28    2
## 307     58    4    28    2
## 308     73    6    28    2
## 309     92    8    28    2
## 310    114   10    28    2
## 311    145   12    28    2
## 312    156   14    28    2
## 313    184   16    28    2
## 314    207   18    28    2
## 315    212   20    28    2
## 316    233   21    28    2
## 317     39    0    29    2
## 318     48    2    29    2
## 319     59    4    29    2
## 320     74    6    29    2
## 321     87    8    29    2
## 322    106   10    29    2
## 323    134   12    29    2
## 324    150   14    29    2
## 325    187   16    29    2
## 326    230   18    29    2
## 327    279   20    29    2
## 328    309   21    29    2
## 329     42    0    30    2
## 330     48    2    30    2
## 331     59    4    30    2
## 332     72    6    30    2
## 333     85    8    30    2
## 334     98   10    30    2
## 335    115   12    30    2
## 336    122   14    30    2
## 337    143   16    30    2
## 338    151   18    30    2
## 339    157   20    30    2
## 340    150   21    30    2
## 341     42    0    31    3
## 342     53    2    31    3
## 343     62    4    31    3
## 344     73    6    31    3
## 345     85    8    31    3
## 346    102   10    31    3
## 347    123   12    31    3
## 348    138   14    31    3
## 349    170   16    31    3
## 350    204   18    31    3
## 351    235   20    31    3
## 352    256   21    31    3
## 353     41    0    32    3
## 354     49    2    32    3
## 355     65    4    32    3
## 356     82    6    32    3
## 357    107    8    32    3
## 358    129   10    32    3
## 359    159   12    32    3
## 360    179   14    32    3
## 361    221   16    32    3
## 362    263   18    32    3
## 363    291   20    32    3
## 364    305   21    32    3
## 365     39    0    33    3
## 366     50    2    33    3
## 367     63    4    33    3
## 368     77    6    33    3
## 369     96    8    33    3
## 370    111   10    33    3
## 371    137   12    33    3
## 372    144   14    33    3
## 373    151   16    33    3
## 374    146   18    33    3
## 375    156   20    33    3
## 376    147   21    33    3
## 377     41    0    34    3
## 378     49    2    34    3
## 379     63    4    34    3
## 380     85    6    34    3
## 381    107    8    34    3
## 382    134   10    34    3
## 383    164   12    34    3
## 384    186   14    34    3
## 385    235   16    34    3
## 386    294   18    34    3
## 387    327   20    34    3
## 388    341   21    34    3
## 389     41    0    35    3
## 390     53    2    35    3
## 391     64    4    35    3
## 392     87    6    35    3
## 393    123    8    35    3
## 394    158   10    35    3
## 395    201   12    35    3
## 396    238   14    35    3
## 397    287   16    35    3
## 398    332   18    35    3
## 399    361   20    35    3
## 400    373   21    35    3
## 401     39    0    36    3
## 402     48    2    36    3
## 403     61    4    36    3
## 404     76    6    36    3
## 405     98    8    36    3
## 406    116   10    36    3
## 407    145   12    36    3
## 408    166   14    36    3
## 409    198   16    36    3
## 410    227   18    36    3
## 411    225   20    36    3
## 412    220   21    36    3
## 413     41    0    37    3
## 414     48    2    37    3
## 415     56    4    37    3
## 416     68    6    37    3
## 417     80    8    37    3
## 418     83   10    37    3
## 419    103   12    37    3
## 420    112   14    37    3
## 421    135   16    37    3
## 422    157   18    37    3
## 423    169   20    37    3
## 424    178   21    37    3
## 425     41    0    38    3
## 426     49    2    38    3
## 427     61    4    38    3
## 428     74    6    38    3
## 429     98    8    38    3
## 430    109   10    38    3
## 431    128   12    38    3
## 432    154   14    38    3
## 433    192   16    38    3
## 434    232   18    38    3
## 435    280   20    38    3
## 436    290   21    38    3
## 437     42    0    39    3
## 438     50    2    39    3
## 439     61    4    39    3
## 440     78    6    39    3
## 441     89    8    39    3
## 442    109   10    39    3
## 443    130   12    39    3
## 444    146   14    39    3
## 445    170   16    39    3
## 446    214   18    39    3
## 447    250   20    39    3
## 448    272   21    39    3
## 449     41    0    40    3
## 450     55    2    40    3
## 451     66    4    40    3
## 452     79    6    40    3
## 453    101    8    40    3
## 454    120   10    40    3
## 455    154   12    40    3
## 456    182   14    40    3
## 457    215   16    40    3
## 458    262   18    40    3
## 459    295   20    40    3
## 460    321   21    40    3
## 461     42    0    41    4
## 462     51    2    41    4
## 463     66    4    41    4
## 464     85    6    41    4
## 465    103    8    41    4
## 466    124   10    41    4
## 467    155   12    41    4
## 468    153   14    41    4
## 469    175   16    41    4
## 470    184   18    41    4
## 471    199   20    41    4
## 472    204   21    41    4
## 473     42    0    42    4
## 474     49    2    42    4
## 475     63    4    42    4
## 476     84    6    42    4
## 477    103    8    42    4
## 478    126   10    42    4
## 479    160   12    42    4
## 480    174   14    42    4
## 481    204   16    42    4
## 482    234   18    42    4
## 483    269   20    42    4
## 484    281   21    42    4
## 485     42    0    43    4
## 486     55    2    43    4
## 487     69    4    43    4
## 488     96    6    43    4
## 489    131    8    43    4
## 490    157   10    43    4
## 491    184   12    43    4
## 492    188   14    43    4
## 493    197   16    43    4
## 494    198   18    43    4
## 495    199   20    43    4
## 496    200   21    43    4
## 497     42    0    44    4
## 498     51    2    44    4
## 499     65    4    44    4
## 500     86    6    44    4
## 501    103    8    44    4
## 502    118   10    44    4
## 503    127   12    44    4
## 504    138   14    44    4
## 505    145   16    44    4
## 506    146   18    44    4
## 507     41    0    45    4
## 508     50    2    45    4
## 509     61    4    45    4
## 510     78    6    45    4
## 511     98    8    45    4
## 512    117   10    45    4
## 513    135   12    45    4
## 514    141   14    45    4
## 515    147   16    45    4
## 516    174   18    45    4
## 517    197   20    45    4
## 518    196   21    45    4
## 519     40    0    46    4
## 520     52    2    46    4
## 521     62    4    46    4
## 522     82    6    46    4
## 523    101    8    46    4
## 524    120   10    46    4
## 525    144   12    46    4
## 526    156   14    46    4
## 527    173   16    46    4
## 528    210   18    46    4
## 529    231   20    46    4
## 530    238   21    46    4
## 531     41    0    47    4
## 532     53    2    47    4
## 533     66    4    47    4
## 534     79    6    47    4
## 535    100    8    47    4
## 536    123   10    47    4
## 537    148   12    47    4
## 538    157   14    47    4
## 539    168   16    47    4
## 540    185   18    47    4
## 541    210   20    47    4
## 542    205   21    47    4
## 543     39    0    48    4
## 544     50    2    48    4
## 545     62    4    48    4
## 546     80    6    48    4
## 547    104    8    48    4
## 548    125   10    48    4
## 549    154   12    48    4
## 550    170   14    48    4
## 551    222   16    48    4
## 552    261   18    48    4
## 553    303   20    48    4
## 554    322   21    48    4
## 555     40    0    49    4
## 556     53    2    49    4
## 557     64    4    49    4
## 558     85    6    49    4
## 559    108    8    49    4
## 560    128   10    49    4
## 561    152   12    49    4
## 562    166   14    49    4
## 563    184   16    49    4
## 564    203   18    49    4
## 565    233   20    49    4
## 566    237   21    49    4
## 567     41    0    50    4
## 568     54    2    50    4
## 569     67    4    50    4
## 570     84    6    50    4
## 571    105    8    50    4
## 572    122   10    50    4
## 573    155   12    50    4
## 574    175   14    50    4
## 575    205   16    50    4
## 576    234   18    50    4
## 577    264   20    50    4
## 578    264   21    50    4

Sección de Mínimos Cuadrados.

  1. Ejemplo: cargue la librería “MASS”

  2. Gráfica los datos de longitud de la mano y la altura con survey.

  3. Cálcula la correlación. Agrega el parámetro use=“complete.obs” para evitar los valores perdidos.

  4. Modelo simple de regresion lineal: Y|X=b_0+b_1X+epsilon.

    1. Se asume que los valores de epsilon se distribuyen normalmente.

    2. La media de epsilon es cero.

    3. La covarianza de epsilon es constante.

    4. b_0 se conoce como intercepto.

    5. b_1 es conocida como la pendiente.

  5. El ajuste de b_0 y b_1 se logra con las siguientes fórmulas matemáticas:

    1. b_1=cor(x,y)sd(y)/sd(x)

    2. b_2=mean(y)-b_1mean(x)

  6. Respuesta ~ Predictor (Formula para ajuste lineal)

  7. Ajuste<-lm(Y~X);

  8. En el caso de las estructuras de los data.frame podemos usar Ajuste<-lm(Y~X,data=Tabla); Donde Y y X son elementos de la tabla.

  9. Con abline(Ajuste) podemos añadir la línea directamente.

library("MASS")
survey
##        Sex Wr.Hnd NW.Hnd W.Hnd    Fold Pulse    Clap Exer Smoke Height      M.I
## 1   Female   18.5   18.0 Right  R on L    92    Left Some Never 173.00   Metric
## 2     Male   19.5   20.5  Left  R on L   104    Left None Regul 177.80 Imperial
## 3     Male   18.0   13.3 Right  L on R    87 Neither None Occas     NA     <NA>
## 4     Male   18.8   18.9 Right  R on L    NA Neither None Never 160.00   Metric
## 5     Male   20.0   20.0 Right Neither    35   Right Some Never 165.00   Metric
## 6   Female   18.0   17.7 Right  L on R    64   Right Some Never 172.72 Imperial
## 7     Male   17.7   17.7 Right  L on R    83   Right Freq Never 182.88 Imperial
## 8   Female   17.0   17.3 Right  R on L    74   Right Freq Never 157.00   Metric
## 9     Male   20.0   19.5 Right  R on L    72   Right Some Never 175.00   Metric
## 10    Male   18.5   18.5 Right  R on L    90   Right Some Never 167.00   Metric
## 11  Female   17.0   17.2 Right  L on R    80   Right Freq Never 156.20 Imperial
## 12    Male   21.0   21.0 Right  R on L    68    Left Freq Never     NA     <NA>
## 13  Female   16.0   16.0 Right  L on R    NA   Right Some Never 155.00   Metric
## 14  Female   19.5   20.2 Right  L on R    66 Neither Some Never 155.00   Metric
## 15    Male   16.0   15.5 Right  R on L    60   Right Some Never     NA     <NA>
## 16  Female   17.5   17.0 Right  R on L    NA   Right Freq Never 156.00   Metric
## 17  Female   18.0   18.0 Right  L on R    89 Neither Freq Never 157.00   Metric
## 18    Male   19.4   19.2  Left  R on L    74   Right Some Never 182.88 Imperial
## 19    Male   20.5   20.5 Right  L on R    NA    Left Some Never 190.50 Imperial
## 20    Male   21.0   20.9 Right  R on L    78   Right Freq Never 177.00   Metric
## 21    Male   21.5   22.0 Right  R on L    72    Left Freq Never 190.50 Imperial
## 22    Male   20.1   20.7 Right  L on R    72   Right Freq Never 180.34 Imperial
## 23    Male   18.5   18.0 Right  L on R    64   Right Freq Never 180.34 Imperial
## 24    Male   21.5   21.2 Right  R on L    62   Right Some Never 184.00   Metric
## 25  Female   17.0   17.5 Right  R on L    64    Left Some Never     NA     <NA>
## 26    Male   18.5   18.5 Right Neither    90 Neither Some Never     NA     <NA>
## 27    Male   21.0   20.7 Right  R on L    90   Right Some Never 172.72 Imperial
## 28    Male   20.8   21.4 Right  R on L    62 Neither Freq Never 175.26 Imperial
## 29    Male   17.8   17.8 Right  L on R    76 Neither Freq Never     NA     <NA>
## 30    Male   19.5   19.5 Right  L on R    79   Right Some Never 167.00   Metric
## 31  Female   18.5   18.0 Right  R on L    76   Right None Occas     NA     <NA>
## 32    Male   18.8   18.2 Right  L on R    78   Right Freq Never 180.00   Metric
## 33  Female   17.1   17.5 Right  R on L    72   Right Freq Heavy 166.40 Imperial
## 34    Male   20.1   20.0 Right  R on L    70   Right Some Never 180.00   Metric
## 35    Male   18.0   19.0 Right  L on R    54 Neither Some Regul     NA     <NA>
## 36    Male   22.2   21.0 Right  L on R    66   Right Freq Occas 190.00   Metric
## 37  Female   16.0   16.5 Right  L on R    NA   Right Some Never 168.00   Metric
## 38    Male   19.4   18.5 Right  R on L    72 Neither Freq Never 182.50   Metric
## 39    Male   22.0   22.0 Right  R on L    80   Right Some Never 185.00   Metric
## 40    Male   19.0   19.0 Right  R on L    NA Neither Freq Occas 171.00   Metric
## 41  Female   17.5   16.0 Right  L on R    NA   Right Some Never 169.00   Metric
## 42  Female   17.8   18.0 Right  R on L    72   Right Some Never 154.94 Imperial
## 43    Male     NA     NA Right  R on L    60    <NA> Some Never 172.00   Metric
## 44  Female   20.1   20.2 Right  L on R    80   Right Some Never 176.50 Imperial
## 45  Female   13.0   13.0  <NA>  L on R    70    Left Freq Never 180.34 Imperial
## 46    Male   17.0   17.5 Right  R on L    NA Neither Freq Never 180.34 Imperial
## 47    Male   23.2   22.7 Right  L on R    84    Left Freq Regul 180.00   Metric
## 48    Male   22.5   23.0 Right  R on L    96   Right None Never 170.00   Metric
## 49  Female   18.0   17.6 Right  R on L    60   Right Some Occas 168.00   Metric
## 50  Female   18.0   17.9 Right  R on L    50    Left None Never 165.00   Metric
## 51    Male   22.0   21.5  Left  R on L    55    Left Freq Never 200.00   Metric
## 52    Male   20.5   20.0 Right  L on R    68   Right Freq Never 190.00   Metric
## 53    Male   17.0   18.0 Right  L on R    78    Left Some Never 170.18 Imperial
## 54    Male   20.5   19.5 Right  L on R    56   Right Freq Never 179.00   Metric
## 55    Male   22.5   22.5 Right  R on L    65   Right Freq Regul 182.00   Metric
## 56    Male   18.5   18.5 Right  L on R    NA Neither Freq Never 171.00   Metric
## 57  Female   15.5   15.4 Right  R on L    70 Neither None Never 157.48 Imperial
## 58    Male   19.5   19.7 Right  R on L    72   Right Freq Never     NA     <NA>
## 59    Male   19.5   19.0 Right  L on R    62   Right Freq Never 177.80 Imperial
## 60    Male   20.6   21.0  Left  L on R    NA    Left Freq Occas 175.26 Imperial
## 61    Male   22.8   23.2 Right  R on L    66 Neither Freq Never 187.00   Metric
## 62  Female   18.5   18.2 Right  R on L    72 Neither Freq Never 167.64 Imperial
## 63  Female   19.6   19.7 Right  L on R    70   Right Freq Never 178.00   Metric
## 64  Female   18.7   18.0  Left  L on R    NA    Left None Never 170.00   Metric
## 65  Female   17.3   18.0 Right  L on R    64 Neither Freq Never 164.00   Metric
## 66    Male   19.5   19.8 Right Neither    NA   Right Freq Never 183.00   Metric
## 67  Female   19.0   19.1 Right  L on R    NA Neither Freq Never 172.00   Metric
## 68  Female   18.5   18.0 Right  R on L    64   Right Freq Never     NA     <NA>
## 69    Male   19.0   19.0 Right  L on R    NA   Right Some Never 180.00   Metric
## 70    Male   21.0   19.5 Right  L on R    80    Left None  <NA>     NA     <NA>
## 71  Female   18.0   17.5 Right  L on R    64    Left Freq Never 170.00   Metric
## 72    Male   19.4   19.5 Right  R on L    NA   Right Freq Heavy 176.00   Metric
## 73  Female   17.0   16.6 Right  R on L    68   Right Some Never 171.00   Metric
## 74  Female   16.5   17.0 Right  L on R    40    Left Freq Never 167.64 Imperial
## 75  Female   15.6   15.8 Right  R on L    88    Left Some Never 165.00   Metric
## 76  Female   17.5   17.5 Right Neither    68   Right Freq Heavy 170.00   Metric
## 77  Female   17.0   17.6 Right  L on R    76   Right Some Never 165.00   Metric
## 78  Female   18.6   18.0 Right  L on R    NA Neither Freq Heavy 165.10 Imperial
## 79  Female   18.3   18.5 Right  R on L    68 Neither Some Never 165.10 Imperial
## 80    Male   20.0   20.5 Right  L on R    NA   Right Freq Never 185.42 Imperial
## 81    Male   19.5   19.5  Left  R on L    66    Left Some Never     NA     <NA>
## 82    Male   19.2   18.9 Right  R on L    76   Right Freq Never 176.50 Imperial
## 83  Female   17.5   17.5 Right  R on L    98    Left Freq Never     NA     <NA>
## 84  Female   17.0   17.4 Right  R on L    NA Neither Some Never     NA     <NA>
## 85    Male   23.0   23.5 Right  L on R    90   Right Freq Never 167.64 Imperial
## 86  Female   17.7   17.0 Right  R on L    76   Right Some Never 167.00   Metric
## 87  Female   18.2   18.0 Right  L on R    70   Right Some Never 162.56 Imperial
## 88  Female   18.3   18.5 Right  R on L    75    Left Freq Never 170.00   Metric
## 89    Male   18.0   18.0 Right Neither    60   Right Freq Never 179.00   Metric
## 90  Female   18.0   17.7  Left  R on L    92    Left Some Never     NA     <NA>
## 91    Male   20.5   20.0 Right  R on L    75    Left Some Never 183.00   Metric
## 92  Female   17.5   18.0 Right Neither    NA   Right Some Never     NA     <NA>
## 93  Female   18.2   17.5 Right  L on R    70   Right Some Never 165.00   Metric
## 94  Female   18.2   18.5 Right  R on L    NA   Right Some Never 168.00   Metric
## 95    Male   21.3   20.8 Right  R on L    65   Right Freq Heavy 179.00   Metric
## 96  Female   19.0   18.8 Right  L on R    NA   Right Some Never     NA     <NA>
## 97    Male   20.0   19.5 Right  R on L    68 Neither Freq Regul 190.00   Metric
## 98  Female   17.5   17.5 Right  R on L    60   Right Freq Never 166.50   Metric
## 99    Male   19.5   19.4 Right Neither    NA   Right Freq Never 165.00   Metric
## 100 Female   19.4   19.6 Right  R on L    68 Neither Freq Never 175.26 Imperial
## 101   Male   21.9   22.2 Right  R on L    NA   Right Some Never 187.00   Metric
## 102   Male   18.9   19.1 Right  L on R    60 Neither None Never 170.00   Metric
## 103 Female   16.0   16.0 Right Neither    NA   Right Some Never 159.00   Metric
## 104 Female   17.5   17.3 Right  R on L    72   Right Freq Never 175.00   Metric
## 105 Female   17.5   17.0 Right  R on L    80    Left Some Heavy 163.00   Metric
## 106 Female   19.5   18.5 Right  R on L    80   Right Some Never 170.00   Metric
## 107 Female   16.2   16.4 Right  R on L    NA   Right Freq Occas 172.00   Metric
## 108 Female   17.0   15.9 Right  R on L    85   Right Freq Never     NA     <NA>
## 109   Male   17.5   17.5 Right  L on R    64 Neither Freq Never 180.00   Metric
## 110   Male   19.7   20.1 Right  R on L    67    Left Some Regul 180.34 Imperial
## 111 Female   18.5   18.5 Right  R on L    76    Left Freq Never 175.00   Metric
## 112   Male   19.2   19.6 Right  L on R    80   Right None Never 190.50 Imperial
## 113 Female   17.2   16.7 Right  R on L    75   Right Freq Never 170.18 Imperial
## 114   Male   20.5   21.0 Right  R on L    60   Right Freq Never 185.00   Metric
## 115 Female   16.0   15.5 Right  L on R    60    Left Freq Never 162.56 Imperial
## 116 Female   16.9   16.0 Right  L on R    70   Right None Never 158.00   Metric
## 117 Female   17.0   16.7 Right  R on L    70   Right Some Never 159.00   Metric
## 118   Male   23.0   22.0  Left  L on R    83    Left Some Heavy 193.04 Imperial
## 119 Female   18.5   18.0  Left  L on R   100 Neither Some Never 171.00   Metric
## 120   Male   21.0   20.4 Right  L on R   100   Right Freq Heavy 184.00   Metric
## 121   Male   20.0   20.0 Right  R on L    80 Neither Freq Occas     NA     <NA>
## 122   Male   22.5   22.5 Right  L on R    76   Right Freq Occas 177.00   Metric
## 123 Female   18.5   18.0 Right  R on L    92   Right Freq Never 172.00   Metric
## 124   Male   19.8   20.0  Left  L on R    59   Right Freq Never 180.00   Metric
## 125   Male   18.5   18.1 Right  L on R    66    Left Freq Never 175.26 Imperial
## 126   Male   19.3   19.4 Right  R on L    NA   Right Freq Never 180.34 Imperial
## 127 Female   16.0   16.0 Right  R on L    68   Right Freq Never 172.72 Imperial
## 128   Male   18.8   19.1 Right  L on R    66 Neither Freq Regul 178.50   Metric
## 129 Female   17.5   17.0 Right  R on L    74   Right Freq Never 157.00   Metric
## 130 Female   16.4   16.5 Right  L on R    90   Right Some Never 152.00   Metric
## 131   Male   22.0   21.5 Right  R on L    86   Right Freq Never 187.96 Imperial
## 132   Male   19.0   19.5 Right  L on R    60   Right Some Never 178.00   Metric
## 133 Female   18.9   20.0 Right  R on L    86   Right Some Never     NA     <NA>
## 134 Female   15.4   16.4  Left  L on R    80    Left Freq Occas 160.02 Imperial
## 135   Male   17.9   17.8 Right  R on L    85    Left Some Never 175.26 Imperial
## 136   Male   23.1   22.5 Right  L on R    90   Right Some Regul 189.00   Metric
## 137   <NA>   19.8   19.0  Left  L on R    73 Neither Freq Never 172.00   Metric
## 138   Male   22.0   22.0 Right  L on R    72   Right Freq Never 182.88 Imperial
## 139   Male   20.0   19.5 Right  L on R    NA   Right Freq Never 170.00   Metric
## 140 Female   19.5   18.5 Right  L on R    68   Right None Never 167.00   Metric
## 141 Female   18.0   18.6 Right  R on L    84   Right Some Never 175.00   Metric
## 142 Female   18.3   19.0 Right  R on L    NA   Right None Never 165.00   Metric
## 143 Female   19.0   18.8 Right  R on L    65   Right Freq Never 172.72 Imperial
## 144   Male   21.4   21.0 Right  L on R    96 Neither Some Never 180.00   Metric
## 145 Female   20.0   19.5  Left  R on L    68 Neither Freq Never 172.00   Metric
## 146   Male   18.5   18.5 Right  R on L    75 Neither Some Never 185.00   Metric
## 147   Male   22.5   22.6 Right  L on R    64   Right Freq Regul 187.96 Imperial
## 148   Male   19.5   20.2 Right  R on L    60 Neither Freq Never 185.42 Imperial
## 149 Female   18.0   18.0 Right  L on R    92 Neither Freq Never 165.00   Metric
## 150 Female   18.0   18.5 Right  R on L    64 Neither Freq Never 164.00   Metric
## 151   Male   21.8   22.3 Right  R on L    76    Left Freq Never 195.00   Metric
## 152 Female   13.0   12.5 Right  L on R    80   Right Freq Never 165.00   Metric
## 153 Female   16.3   16.2 Right  L on R    92   Right Some Regul 152.40 Imperial
## 154   Male   21.5   21.6 Right  R on L    69   Right Freq Never 172.72 Imperial
## 155   Male   18.9   19.1 Right  L on R    68   Right None Never 180.34 Imperial
## 156   Male   20.5   20.0 Right  R on L    76   Right Freq Never 173.00   Metric
## 157   Male   14.0   15.5 Right  L on R    NA Neither Freq Heavy     NA     <NA>
## 158 Female   18.9   19.2 Right  L on R    74   Right Some Never 167.64 Imperial
## 159   Male   20.0   20.5 Right  R on L    NA   Right None Never 187.96 Imperial
## 160   Male   18.5   19.0 Right  L on R    84   Right Freq Regul 187.00   Metric
## 161 Female   17.5   17.1 Right  R on L    80    Left None Never 167.00   Metric
## 162   Male   18.1   18.2  Left Neither    NA   Right Some Never 168.00   Metric
## 163   Male   20.2   20.3 Right  L on R    72 Neither Some Never 191.80 Imperial
## 164 Female   16.5   16.9 Right  R on L    60 Neither Freq Occas 169.20   Metric
## 165   Male   19.1   19.1 Right Neither    NA   Right Some Never 177.00   Metric
## 166 Female   17.6   17.2 Right  R on L    81    Left Some Never 168.00   Metric
## 167 Female   19.5   19.2 Right  R on L    70   Right Some Never 170.00   Metric
## 168 Female   16.5   15.0 Right  L on R    65   Right Some Regul 160.02 Imperial
## 169   Male   19.0   18.5 Right  L on R    NA Neither Freq Never 189.00   Metric
## 170   Male   19.0   18.5 Right  R on L    72   Right Freq Never 180.34 Imperial
## 171 Female   16.5   17.0 Right  L on R    NA   Right Some Never 168.00   Metric
## 172   Male   20.5   19.5  Left  L on R    80   Right Some Occas 182.88 Imperial
## 173 Female   15.5   15.5 Right Neither    50   Right Some Regul     NA     <NA>
## 174 Female   18.0   17.5 Right  R on L    48 Neither Freq Never 165.00   Metric
## 175 Female   17.5   18.0 Right  R on L    68 Neither Freq Never 157.48 Imperial
## 176 Female   19.0   18.5  Left  L on R   104    Left Freq Never 170.00   Metric
## 177   Male   20.5   20.5 Right Neither    76   Right Freq Regul 172.72 Imperial
## 178 Female   16.7   17.0 Right  L on R    84    Left Freq Never 164.00   Metric
## 179 Female   20.5   20.5 Right  R on L    NA    Left Freq Regul     NA     <NA>
## 180 Female   17.0   16.5 Right  R on L    70   Right Some Never 162.56 Imperial
## 181   Male   19.0   19.5 Right  R on L    68   Right Freq Occas 172.00   Metric
## 182 Female   14.0   13.5 Right  R on L    87 Neither Freq Occas 165.10 Imperial
## 183 Female   17.5   17.6 Right  L on R    79   Right Some Never 162.50   Metric
## 184   Male   18.5   19.0 Right  L on R    70    Left Freq Never 170.00   Metric
## 185   Male   18.0   18.5 Right Neither    90   Right Some Never 175.00   Metric
## 186   Male   20.5   20.7 Right  R on L    72   Right Some Never 168.00   Metric
## 187 Female   17.0   17.0 Right  L on R    79   Right Some Never 163.00   Metric
## 188   Male   18.5   18.5 Right  R on L    65   Right None Never 165.00   Metric
## 189   Male   18.0   18.5 Right  R on L    62   Right Freq Never 173.00   Metric
## 190   Male   18.5   18.0 Right Neither    63 Neither Freq Never 196.00   Metric
## 191   Male   20.0   19.5 Right  R on L    92   Right Some Never 179.10 Imperial
## 192   Male   22.0   22.5 Right  L on R    60   Right Some Never 180.00   Metric
## 193   Male   17.9   18.4 Right  R on L    68    Left None Occas 176.00   Metric
## 194 Female   17.6   17.8 Right  L on R    72    Left Some Never 160.02 Imperial
## 195 Female   16.7   15.1 Right Neither    NA   Right None Never 157.48 Imperial
## 196 Female   17.0   17.6 Right  L on R    76   Right Some Never 165.00   Metric
## 197 Female   15.0   13.0 Right  R on L    80 Neither Freq Never 170.18 Imperial
## 198   Male   16.0   15.5 Right Neither    71   Right Freq Never 154.94 Imperial
## 199 Female   19.1   19.0 Right  R on L    80   Right Some Occas 170.00   Metric
## 200 Female   17.5   16.5 Right  R on L    80 Neither Some Never 164.00   Metric
## 201 Female   16.2   15.8 Right  R on L    61   Right Some Occas 167.00   Metric
## 202   Male   21.0   21.0 Right  L on R    48 Neither Freq Never 174.00   Metric
## 203 Female   18.8   17.8 Right  R on L    76   Right Some Never     NA     <NA>
## 204 Female   18.5   18.0 Right Neither    86   Right None Never 160.00   Metric
## 205   Male   17.0   17.5 Right  R on L    80   Right Some Regul 179.10   Metric
## 206 Female   17.5   17.0 Right  R on L    83 Neither Freq Occas 168.00   Metric
## 207 Female   17.5   17.6 Right  L on R    76   Right Some Never 153.50   Metric
## 208   Male   17.5   17.6 Right  R on L    84   Right Some Never 160.00   Metric
## 209   Male   17.5   17.0  Left  L on R    97 Neither None Never 165.00   Metric
## 210 Female   20.8   20.7 Right  R on L    NA Neither Freq Never 171.50   Metric
## 211 Female   18.6   18.6 Right  L on R    74   Right Some Never 160.00   Metric
## 212 Female   17.5   17.5  Left  R on L    83 Neither Some Never 163.00   Metric
## 213   Male   18.0   18.5 Right  R on L    78   Right Freq Never     NA     <NA>
## 214   Male   17.0   17.5 Right  R on L    65   Right Some Never 165.00   Metric
## 215 Female   18.0   17.8 Right  L on R    68   Right Some Never 168.90 Imperial
## 216   Male   19.5   20.0 Right Neither    NA   Right Some Never 170.00   Metric
## 217 Female   16.3   16.2 Right  L on R    NA   Right None Never     NA     <NA>
## 218   Male   18.2   19.8 Right  R on L    88   Right Freq Never 185.00   Metric
## 219 Female   17.0   17.3 Right  L on R    NA Neither Freq Never 173.00   Metric
## 220   Male   23.2   23.2 Right  L on R    75   Right Freq Never 188.00   Metric
## 221   Male   23.2   23.3 Right  L on R    NA   Right None Heavy 171.00   Metric
## 222 Female   15.9   16.5 Right  R on L    70   Right Freq Never 167.64 Imperial
## 223 Female   17.5   18.4 Right  R on L    88   Right Some Never 162.56 Imperial
## 224 Female   17.5   17.6 Right  L on R    NA   Right Freq Never 150.00   Metric
## 225 Female   17.6   17.2 Right  L on R    NA   Right Some Never     NA     <NA>
## 226 Female   17.5   17.8 Right  R on L    96   Right Some Never     NA     <NA>
## 227 Female   18.8   18.3 Right  R on L    80   Right Some Heavy 170.18 Imperial
## 228   Male   20.0   19.8 Right  L on R    68   Right Freq Never 185.00   Metric
## 229 Female   18.6   18.8 Right  L on R    70   Right Freq Regul 167.00   Metric
## 230   Male   18.6   19.6 Right  L on R    71   Right Freq Occas 185.00   Metric
## 231 Female   18.8   18.5 Right  R on L    80   Right Some Never 169.00   Metric
## 232   Male   18.0   16.0 Right  R on L    NA   Right Some Never 180.34 Imperial
## 233 Female   18.0   18.0 Right  L on R    85   Right Some Never 165.10 Imperial
## 234 Female   18.5   18.0 Right  L on R    88   Right Some Never 160.00   Metric
## 235 Female   17.5   16.5 Right  R on L    NA   Right Some Never 170.00   Metric
## 236   Male   21.0   21.5 Right  R on L    90   Right Some Never 183.00   Metric
## 237 Female   17.6   17.3 Right  R on L    85   Right Freq Never 168.50   Metric
##        Age
## 1   18.250
## 2   17.583
## 3   16.917
## 4   20.333
## 5   23.667
## 6   21.000
## 7   18.833
## 8   35.833
## 9   19.000
## 10  22.333
## 11  28.500
## 12  18.250
## 13  18.750
## 14  17.500
## 15  17.167
## 16  17.167
## 17  19.333
## 18  18.333
## 19  19.750
## 20  17.917
## 21  17.917
## 22  18.167
## 23  17.833
## 24  18.250
## 25  19.167
## 26  17.583
## 27  17.500
## 28  18.083
## 29  21.917
## 30  19.250
## 31  41.583
## 32  17.500
## 33  39.750
## 34  17.167
## 35  17.750
## 36  18.000
## 37  19.000
## 38  17.917
## 39  35.500
## 40  19.917
## 41  17.500
## 42  17.083
## 43  28.583
## 44  17.500
## 45  17.417
## 46  18.500
## 47  18.917
## 48  19.417
## 49  18.417
## 50  30.750
## 51  18.500
## 52  17.500
## 53  18.333
## 54  17.417
## 55  20.000
## 56  18.333
## 57  17.167
## 58  17.417
## 59  17.667
## 60  18.417
## 61  20.333
## 62  17.333
## 63  17.500
## 64  19.833
## 65  18.583
## 66  18.000
## 67  30.667
## 68  16.917
## 69  19.917
## 70  18.333
## 71  17.583
## 72  17.833
## 73  17.667
## 74  17.417
## 75  17.750
## 76  20.667
## 77  23.583
## 78  17.167
## 79  17.083
## 80  18.750
## 81  16.750
## 82  20.167
## 83  17.667
## 84  17.167
## 85  17.167
## 86  17.250
## 87  18.000
## 88  18.750
## 89  21.583
## 90  17.583
## 91  19.667
## 92  18.000
## 93  19.667
## 94  17.083
## 95  22.833
## 96  17.083
## 97  19.417
## 98  23.250
## 99  18.083
## 100 19.083
## 101 18.917
## 102 17.750
## 103 20.833
## 104 20.167
## 105 17.667
## 106 18.250
## 107 17.000
## 108 18.500
## 109 18.583
## 110 17.750
## 111 24.167
## 112 18.167
## 113 21.167
## 114 17.917
## 115 17.417
## 116 20.500
## 117 22.917
## 118 18.917
## 119 18.917
## 120 20.083
## 121 17.500
## 122 18.250
## 123 17.500
## 124 17.417
## 125 21.000
## 126 19.833
## 127 17.667
## 128 18.083
## 129 18.000
## 130 18.333
## 131 20.000
## 132 18.750
## 133 19.083
## 134 18.500
## 135 18.417
## 136 19.167
## 137 21.500
## 138 19.333
## 139 21.417
## 140 18.667
## 141 17.500
## 142 21.083
## 143 17.250
## 144 19.000
## 145 19.167
## 146 19.000
## 147 23.000
## 148 32.667
## 149 20.000
## 150 20.167
## 151 25.500
## 152 18.167
## 153 23.500
## 154 70.417
## 155 43.833
## 156 23.583
## 157 21.083
## 158 44.250
## 159 19.667
## 160 17.917
## 161 18.417
## 162 21.167
## 163 17.500
## 164 29.083
## 165 19.917
## 166 18.500
## 167 18.167
## 168 32.750
## 169 17.417
## 170 17.333
## 171 73.000
## 172 18.667
## 173 18.500
## 174 18.667
## 175 17.750
## 176 17.250
## 177 36.583
## 178 23.083
## 179 19.250
## 180 17.167
## 181 23.417
## 182 17.083
## 183 17.250
## 184 23.833
## 185 18.750
## 186 21.167
## 187 24.667
## 188 18.500
## 189 20.333
## 190 20.083
## 191 18.917
## 192 27.333
## 193 18.917
## 194 17.250
## 195 18.167
## 196 26.500
## 197 17.000
## 198 17.167
## 199 19.167
## 200 17.500
## 201 19.250
## 202 21.333
## 203 18.583
## 204 20.167
## 205 18.667
## 206 17.083
## 207 17.417
## 208 18.583
## 209 19.500
## 210 18.500
## 211 17.167
## 212 17.250
## 213 17.500
## 214 20.417
## 215 17.083
## 216 21.250
## 217 19.250
## 218 19.333
## 219 19.167
## 220 18.917
## 221 20.917
## 222 17.333
## 223 18.167
## 224 20.750
## 225 19.917
## 226 18.667
## 227 18.417
## 228 17.417
## 229 20.333
## 230 19.333
## 231 18.167
## 232 20.750
## 233 17.667
## 234 16.917
## 235 18.583
## 236 17.167
## 237 17.750
cor(survey$Wr.Hnd,survey$Height,use="complete.obs")
## [1] 0.6009909
Ajuste<-lm(Height~Wr.Hnd,data=survey)
Ajuste
## 
## Call:
## lm(formula = Height ~ Wr.Hnd, data = survey)
## 
## Coefficients:
## (Intercept)       Wr.Hnd  
##     113.954        3.117
plot(survey$Wr.Hnd,survey$Height)
abline(Ajuste)

mean(Ajuste$residuals)
## [1] 2.565072e-16