# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899137
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347488
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0071972837  0.0152584239  0.0555442113 -0.0122131659 -0.0081550523
##   [6] -0.0323012840 -0.0279738386 -0.0219677052 -0.0128843951  0.0143678377
##  [11] -0.0202477360 -0.0091797138  0.0128693642  0.0214067777  0.0067456869
##  [16]  0.0114737292 -0.0448000271  0.0304533824  0.0121356315  0.0264024566
##  [21] -0.0231949181 -0.0175752845 -0.0025489216  0.0168601739 -0.0210971830
##  [26] -0.0103164349  0.0399784964 -0.0360110731  0.0099722576  0.0370944402
##  [31]  0.0311619831  0.0005441281 -0.0001044430 -0.0365285520 -0.0039547015
##  [36] -0.0148450783 -0.0133247504  0.0135216086 -0.0074041507  0.0174300745
##  [41] -0.0433062969 -0.0229424428  0.0304365240 -0.0265971173  0.0179034009
##  [46] -0.0040170866  0.0230504292 -0.0196068261  0.0399766991  0.0173382260
##  [51] -0.0167761373 -0.0166662861 -0.0206760741  0.0164043391  0.0370529168
##  [56]  0.0161256940 -0.0294839216  0.0360273828  0.0170673578  0.0159602487
##  [61]  0.0055748578 -0.0246453586  0.0054421012  0.0362165465  0.0230904273
##  [66]  0.0048237389  0.0322772953  0.0088869300  0.0263476772 -0.0114711743
##  [71] -0.0052092776  0.0013362081 -0.0008085510  0.0186602444  0.0155807525
##  [76] -0.0079392251 -0.0356329593 -0.0119109931  0.0009518493  0.0146316275
##  [81]  0.0069309962  0.0151959413  0.0002243850  0.0192069098  0.0113655273
##  [86]  0.0217664688  0.0131274642  0.0156581953  0.0045770612  0.0408392365
##  [91] -0.0147687015  0.0033893863  0.0470891692 -0.0098972527 -0.0446925811
##  [96]  0.0359533655  0.0137308053 -0.0005685398 -0.0140814234  0.0054645849
## [101] -0.0193270192  0.0342096965  0.0033805084  0.0259350509  0.0119494262
## [106]  0.0248708922  0.0122038835 -0.0163563339  0.0015663357  0.0309786907
## [111] -0.0395427418 -0.0140094871  0.0358935676  0.0133782704  0.0074263387
## [116] -0.0148034467  0.0150896064 -0.0072573500  0.0127632874 -0.0191391023
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.02 
##  4   1.06 
##  5   0.988
##  6   0.992
##  7   0.968
##  8   0.972
##  9   0.978
## 10   0.987
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.01 
##  3  1.02 
##  4  1.08 
##  5  1.07 
##  6  1.06 
##  7  1.02 
##  8  0.995
##  9  0.973
## 10  0.960
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.16286

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {

    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)

}

simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.03
##  3   1.06
##  4   1.09
##  5   1.12
##  6   1.12
##  7   1.09
##  8   1.10
##  9   1.09
## 10   1.07
## # ℹ 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%

    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%

    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%

    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%

    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Calculate the quantiles for simulated values

probs <- c(.005, .025, .25, .5, .75, .975, .995)

monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%

    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  0.91  1.11  1.57  1.86  2.26  3.37  3.52

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%

    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

# Simplify the plot

sim_summary <- monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.54   1.86 0.845
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%

    # Plot
    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme()