# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062302871 -0.0029359047  0.0366063041  0.052133200  4.992258e-02
## 2013-02-28  0.0058912025 -0.0231052356 -0.0129696618  0.016175614  1.267858e-02
## 2013-03-28  0.0009840015 -0.0102348976  0.0129696618  0.040257920  3.726786e-02
## 2013-04-30  0.0096393894  0.0120846781  0.0489678045  0.001222682  1.903012e-02
## 2013-05-31 -0.0202144468 -0.0494832642 -0.0306558616  0.041976232  2.333528e-02
## 2013-06-28 -0.0157773076 -0.0547285730 -0.0271442026 -0.001403003 -1.343412e-02
## 2013-07-31  0.0026876697  0.0131601342  0.0518602560  0.063541391  5.038590e-02
## 2013-08-30 -0.0082983777 -0.0257057324 -0.0197462881 -0.034743707 -3.045155e-02
## 2013-09-30  0.0111435176  0.0695887138  0.0753384984  0.063873778  3.115611e-02
## 2013-10-31  0.0082923147  0.0408614106  0.0320817953  0.034234151  4.526646e-02
## 2013-11-29 -0.0025095513 -0.0025941412  0.0054493836  0.041661124  2.920681e-02
## 2013-12-31 -0.0055834081 -0.0040743613  0.0215282128  0.012892217  2.559631e-02
## 2014-01-31  0.0152915423 -0.0903226742 -0.0534133024 -0.035775718 -3.588413e-02
## 2014-02-28  0.0037571044  0.0332204781  0.0595051622  0.045257512  4.451010e-02
## 2014-03-31 -0.0014816528  0.0380219951 -0.0046024885  0.013315590  8.261037e-03
## 2014-04-30  0.0081834237  0.0077726251  0.0165291383 -0.023184199  6.927567e-03
## 2014-05-30  0.0117212410  0.0290913005  0.0158285748  0.006205060  2.294114e-02
## 2014-06-30 -0.0005757314  0.0237337188  0.0091653328  0.037718728  2.043487e-02
## 2014-07-31 -0.0025118242  0.0135554647 -0.0263796274 -0.052009104 -1.352853e-02
## 2014-08-29  0.0114309374  0.0279046866  0.0018004223  0.043657538  3.870463e-02
## 2014-09-30 -0.0061674683 -0.0808566908 -0.0395988010 -0.061260349 -1.389224e-02
## 2014-10-31  0.0105843523  0.0140964533 -0.0026548115  0.068874970  2.327761e-02
## 2014-11-28  0.0065484984 -0.0155414124  0.0006254686  0.004773570  2.710152e-02
## 2014-12-31  0.0014755843 -0.0404419977 -0.0407468928  0.025295965 -2.539875e-03
## 2015-01-30  0.0203153307 -0.0068956168  0.0062267519 -0.054628091 -3.007699e-02
## 2015-02-27 -0.0089880583  0.0431359040  0.0614505303  0.056914632  5.468184e-02
## 2015-03-31  0.0037399490 -0.0150859040 -0.0143888617  0.010156304 -1.583005e-02
## 2015-04-30 -0.0032332530  0.0662810726  0.0358165822 -0.018417676  9.785473e-03
## 2015-05-29 -0.0043834654 -0.0419109062  0.0019527989  0.007509954  1.277455e-02
## 2015-06-30 -0.0108254179 -0.0297468452 -0.0316789006  0.004171234 -2.052136e-02
## 2015-07-31  0.0085841319 -0.0651782666  0.0201144059 -0.027375276  2.233786e-02
## 2015-08-31 -0.0033633802 -0.0925120915 -0.0771524922 -0.047268261 -6.288647e-02
## 2015-09-30  0.0080815170 -0.0318249940 -0.0451948142 -0.038464871 -2.584726e-02
## 2015-10-30  0.0006853483  0.0618085079  0.0640258921  0.063589723  8.163500e-02
## 2015-11-30 -0.0038980689 -0.0255606045 -0.0075558806  0.024415234  3.648220e-03
## 2015-12-31 -0.0019193720 -0.0389471047 -0.0235950314 -0.052156956 -1.743365e-02
## 2016-01-29  0.0123302753 -0.0516366796 -0.0567579130 -0.060306943 -5.106844e-02
## 2016-02-29  0.0088314052 -0.0082115302 -0.0339139989  0.020605230 -8.264234e-04
## 2016-03-31  0.0087091057  0.1218788516  0.0637459623  0.089910429  6.510043e-02
## 2016-04-29  0.0025459919  0.0040792832  0.0219750146  0.021044220  3.933239e-03
## 2016-05-31  0.0001357112 -0.0376284439 -0.0008560461  0.004397100  1.686870e-02
## 2016-06-30  0.0191665447  0.0445824706 -0.0244913662  0.008292264  3.469734e-03
## 2016-07-29  0.0054298198  0.0524423407  0.0390000281  0.049348251  3.582198e-02
## 2016-08-31 -0.0021564333  0.0087981012  0.0053268633  0.011261008  1.196862e-03
## 2016-09-30  0.0005161153  0.0248730610  0.0132790784  0.008614859  5.803865e-05
## 2016-10-31 -0.0082054612 -0.0083120689 -0.0224035875 -0.038134750 -1.748908e-02
## 2016-11-30 -0.0259897323 -0.0451618935 -0.0179743989  0.125246472  3.617596e-02
## 2016-12-30  0.0025381533 -0.0025300101  0.0267027783  0.031491721  2.006889e-02
## 2017-01-31  0.0021261782  0.0644312752  0.0323819590 -0.012143845  1.773664e-02
## 2017-02-28  0.0064377549  0.0172579591  0.0118363924  0.013428914  3.853938e-02
## 2017-03-31 -0.0005533261  0.0361888723  0.0318057133 -0.006533628  1.248925e-03
## 2017-04-28  0.0090299038  0.0168666252  0.0239522160  0.005108216  9.877368e-03
## 2017-05-31  0.0068475203  0.0280597656  0.0348103315 -0.022863006  1.401429e-02
## 2017-06-30 -0.0001829327  0.0092238738  0.0029557828  0.029152257  6.354682e-03
## 2017-07-31  0.0033346327  0.0565945416  0.0261879397  0.007480775  2.034564e-02
## 2017-08-31  0.0093691925  0.0232437716 -0.0004484333 -0.027564235  2.913630e-03
## 2017-09-29 -0.0057326478 -0.0004460965  0.0233429833  0.082321689  1.994907e-02
## 2017-10-31  0.0009782093  0.0322782757  0.0166535277  0.005916270  2.329063e-02
## 2017-11-30 -0.0014840174 -0.0038969524  0.0068700389  0.036913008  3.010798e-02
## 2017-12-29  0.0047402862  0.0369253964  0.0133983369 -0.003731197  1.205532e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398371e-05 0.0001042100 4.178209e-05 -7.812042e-05 -9.031420e-06
## EEM  1.042100e-04 0.0017547091 1.039017e-03  6.437741e-04  6.795412e-04
## EFA  4.178209e-05 0.0010390174 1.064239e-03  6.490300e-04  6.975398e-04
## IJS -7.812042e-05 0.0006437741 6.490300e-04  1.565450e-03  8.290234e-04
## SPY -9.031420e-06 0.0006795412 6.975398e-04  8.290234e-04  7.408267e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##           [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874096 0.009257143 0.005815637 0.005684469 0.002330245
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062302871 -0.0029359047  0.0366063041  0.052133200  4.992258e-02
## 2013-02-28  0.0058912025 -0.0231052356 -0.0129696618  0.016175614  1.267858e-02
## 2013-03-28  0.0009840015 -0.0102348976  0.0129696618  0.040257920  3.726786e-02
## 2013-04-30  0.0096393894  0.0120846781  0.0489678045  0.001222682  1.903012e-02
## 2013-05-31 -0.0202144468 -0.0494832642 -0.0306558616  0.041976232  2.333528e-02
## 2013-06-28 -0.0157773076 -0.0547285730 -0.0271442026 -0.001403003 -1.343412e-02
## 2013-07-31  0.0026876697  0.0131601342  0.0518602560  0.063541391  5.038590e-02
## 2013-08-30 -0.0082983777 -0.0257057324 -0.0197462881 -0.034743707 -3.045155e-02
## 2013-09-30  0.0111435176  0.0695887138  0.0753384984  0.063873778  3.115611e-02
## 2013-10-31  0.0082923147  0.0408614106  0.0320817953  0.034234151  4.526646e-02
## 2013-11-29 -0.0025095513 -0.0025941412  0.0054493836  0.041661124  2.920681e-02
## 2013-12-31 -0.0055834081 -0.0040743613  0.0215282128  0.012892217  2.559631e-02
## 2014-01-31  0.0152915423 -0.0903226742 -0.0534133024 -0.035775718 -3.588413e-02
## 2014-02-28  0.0037571044  0.0332204781  0.0595051622  0.045257512  4.451010e-02
## 2014-03-31 -0.0014816528  0.0380219951 -0.0046024885  0.013315590  8.261037e-03
## 2014-04-30  0.0081834237  0.0077726251  0.0165291383 -0.023184199  6.927567e-03
## 2014-05-30  0.0117212410  0.0290913005  0.0158285748  0.006205060  2.294114e-02
## 2014-06-30 -0.0005757314  0.0237337188  0.0091653328  0.037718728  2.043487e-02
## 2014-07-31 -0.0025118242  0.0135554647 -0.0263796274 -0.052009104 -1.352853e-02
## 2014-08-29  0.0114309374  0.0279046866  0.0018004223  0.043657538  3.870463e-02
## 2014-09-30 -0.0061674683 -0.0808566908 -0.0395988010 -0.061260349 -1.389224e-02
## 2014-10-31  0.0105843523  0.0140964533 -0.0026548115  0.068874970  2.327761e-02
## 2014-11-28  0.0065484984 -0.0155414124  0.0006254686  0.004773570  2.710152e-02
## 2014-12-31  0.0014755843 -0.0404419977 -0.0407468928  0.025295965 -2.539875e-03
## 2015-01-30  0.0203153307 -0.0068956168  0.0062267519 -0.054628091 -3.007699e-02
## 2015-02-27 -0.0089880583  0.0431359040  0.0614505303  0.056914632  5.468184e-02
## 2015-03-31  0.0037399490 -0.0150859040 -0.0143888617  0.010156304 -1.583005e-02
## 2015-04-30 -0.0032332530  0.0662810726  0.0358165822 -0.018417676  9.785473e-03
## 2015-05-29 -0.0043834654 -0.0419109062  0.0019527989  0.007509954  1.277455e-02
## 2015-06-30 -0.0108254179 -0.0297468452 -0.0316789006  0.004171234 -2.052136e-02
## 2015-07-31  0.0085841319 -0.0651782666  0.0201144059 -0.027375276  2.233786e-02
## 2015-08-31 -0.0033633802 -0.0925120915 -0.0771524922 -0.047268261 -6.288647e-02
## 2015-09-30  0.0080815170 -0.0318249940 -0.0451948142 -0.038464871 -2.584726e-02
## 2015-10-30  0.0006853483  0.0618085079  0.0640258921  0.063589723  8.163500e-02
## 2015-11-30 -0.0038980689 -0.0255606045 -0.0075558806  0.024415234  3.648220e-03
## 2015-12-31 -0.0019193720 -0.0389471047 -0.0235950314 -0.052156956 -1.743365e-02
## 2016-01-29  0.0123302753 -0.0516366796 -0.0567579130 -0.060306943 -5.106844e-02
## 2016-02-29  0.0088314052 -0.0082115302 -0.0339139989  0.020605230 -8.264234e-04
## 2016-03-31  0.0087091057  0.1218788516  0.0637459623  0.089910429  6.510043e-02
## 2016-04-29  0.0025459919  0.0040792832  0.0219750146  0.021044220  3.933239e-03
## 2016-05-31  0.0001357112 -0.0376284439 -0.0008560461  0.004397100  1.686870e-02
## 2016-06-30  0.0191665447  0.0445824706 -0.0244913662  0.008292264  3.469734e-03
## 2016-07-29  0.0054298198  0.0524423407  0.0390000281  0.049348251  3.582198e-02
## 2016-08-31 -0.0021564333  0.0087981012  0.0053268633  0.011261008  1.196862e-03
## 2016-09-30  0.0005161153  0.0248730610  0.0132790784  0.008614859  5.803865e-05
## 2016-10-31 -0.0082054612 -0.0083120689 -0.0224035875 -0.038134750 -1.748908e-02
## 2016-11-30 -0.0259897323 -0.0451618935 -0.0179743989  0.125246472  3.617596e-02
## 2016-12-30  0.0025381533 -0.0025300101  0.0267027783  0.031491721  2.006889e-02
## 2017-01-31  0.0021261782  0.0644312752  0.0323819590 -0.012143845  1.773664e-02
## 2017-02-28  0.0064377549  0.0172579591  0.0118363924  0.013428914  3.853938e-02
## 2017-03-31 -0.0005533261  0.0361888723  0.0318057133 -0.006533628  1.248925e-03
## 2017-04-28  0.0090299038  0.0168666252  0.0239522160  0.005108216  9.877368e-03
## 2017-05-31  0.0068475203  0.0280597656  0.0348103315 -0.022863006  1.401429e-02
## 2017-06-30 -0.0001829327  0.0092238738  0.0029557828  0.029152257  6.354682e-03
## 2017-07-31  0.0033346327  0.0565945416  0.0261879397  0.007480775  2.034564e-02
## 2017-08-31  0.0093691925  0.0232437716 -0.0004484333 -0.027564235  2.913630e-03
## 2017-09-29 -0.0057326478 -0.0004460965  0.0233429833  0.082321689  1.994907e-02
## 2017-10-31  0.0009782093  0.0322782757  0.0166535277  0.005916270  2.329063e-02
## 2017-11-30 -0.0014840174 -0.0038969524  0.0068700389  0.036913008  3.010798e-02
## 2017-12-29  0.0047402862  0.0369253964  0.0133983369 -0.003731197  1.205532e-02
calculate_component_contribution <- function(.data, w) {
    
        # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column chart of component contribution

plot_data <-asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    #Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") 

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Percent Contribution to Porfolio Volatility")

6 Rolling Component Contribution

Column Chart of Component Contribution and Weight

plot_data <-asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    #Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() + 
    labs(title = "Percent Contribution to Porfolio Volatility and Weight", 
         y = "Percent",
         x = NULL)