load libraries
library(tidyverse)
library(dplyr)
library(ggplot2)
library(ggpubr)
#library(reshape2)
#library(hrbrthemes)
library("gridExtra")
#library(cowplot)
library(plotly)
library(scales) # to calculate percentages, and put into dataframe
library(multcompView) # to correct for multiple comparisons after Tukey HSD
knitr::opts_chunk$set(echo = TRUE)
load data
data <- read.csv("/Users/nuriteliash/Documents/GitHub/OA_Biogaz/data/OA_Yosef.csv")
df = data %>%
#dplyr::mutate(fall_norm = fall/falling_time) %>%
#dplyr::mutate(date = as.Date(date, format = "%d/%m/%Y")) %>% # Convert to Date object
dplyr::mutate(date = factor(date, level = c("March10th", "May7th"))) %>%
dplyr::mutate(varroa = as.numeric(varroa)) %>%
dplyr::mutate(hive = as.character(hive)) %>%
dplyr::mutate(honey_weight_net = as.numeric(honey_weight_net)) %>%
dplyr::mutate(bees_strength = as.numeric(bees_strength)) %>%
dplyr::mutate(honey_stores = as.numeric(honey_stores))
filtered_df <- df %>%
filter(date == "May7th") %>%
na.omit()
p_honey = filtered_df %>%
ggplot( aes(x = treatment, y = honey_weight_net, color = treatment, text = paste("Hive:", hive, "<br>Weight:", honey_weight_net))) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(legend.position = "none") +
ggtitle("Honey yield, May7th") +
facet_wrap(~ yard)
# Convert the ggplot object to a plotly object and add hover information
p_honey_plotly <- ggplotly(p_honey, tooltip = "text")
# Print the plotly object
p_honey_plotly
# Run the ANOVA
anova_result <- aov(honey_weight_net ~ treatment * yard, data = filtered_df) %>%
na.omit()
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 401 200.4 2.566 0.0827 .
## yard 2 3874 1937.2 24.806 3.12e-09 ***
## treatment:yard 3 128 42.6 0.545 0.6525
## Residuals 86 6716 78.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Diagnostic plots for ANOVA
#par(mfrow = c(2, 2)) # Set up the plotting area for 2x2 plots
#plot(anova_result)
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for treatment
tukey_treatment <- TukeyHSD(anova_result, "treatment")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = honey_weight_net ~ treatment * yard, data = filtered_df)
##
## $treatment
## diff lwr upr p adj
## Control-cardboards 2.815421 -2.091936 7.7227780 0.3619976
## Towels-cardboards -2.689936 -8.486582 3.1067104 0.5125506
## Towels-Control -5.505357 -11.413220 0.4025059 0.0730716
# Extract the Tukey HSD results for yard
tukey_yard <- TukeyHSD(anova_result, "yard")
print(tukey_yard)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = honey_weight_net ~ treatment * yard, data = filtered_df)
##
## $yard
## diff lwr upr p adj
## Mujea-Biogaz 13.659144 8.57972 18.738567 0.0000000
## Zeytim-Biogaz 11.369619 5.78125 16.957989 0.0000160
## Zeytim-Mujea -2.289524 -7.77661 3.197562 0.5819204
# Extract the Tukey HSD results for treatment:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "treatment:yard")
#print(tukey_interaction)
filtered_df <- df %>%
filter(date == "May7th") %>%
na.omit()
p_colony = filtered_df %>%
ggplot( aes(x = treatment, y = bees_strength, color = treatment, text = paste("Hive:", hive, "<br>Strength:", bees_strength))) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(legend.position = "none") +
ggtitle("Colony strength, May7th") +
facet_wrap(~ yard)
# Convert the ggplot object to a plotly object and add hover information
p_colony_plotly <- ggplotly(p_colony, tooltip = "text")
# Print the plotly object
p_colony_plotly
# Run the ANOVA
anova_result <- aov(bees_strength ~ treatment * yard, data = filtered_df) %>%
na.omit()
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 0.62 0.3120 0.464 0.631
## yard 2 2.09 1.0429 1.550 0.218
## treatment:yard 3 0.65 0.2180 0.324 0.808
## Residuals 86 57.87 0.6729
# Diagnostic plots for ANOVA
#par(mfrow = c(2, 2)) # Set up the plotting area for 2x2 plots
#plot(anova_result)
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for treatment
tukey_treatment <- TukeyHSD(anova_result, "treatment")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = bees_strength ~ treatment * yard, data = filtered_df)
##
## $treatment
## diff lwr upr p adj
## Control-cardboards 0.18388278 -0.2716390 0.6394046 0.6022891
## Towels-cardboards 0.09102564 -0.4470438 0.6290951 0.9142759
## Towels-Control -0.09285714 -0.6412502 0.4555360 0.9141258
# Extract the Tukey HSD results for yard
tukey_yard <- TukeyHSD(anova_result, "yard")
print(tukey_yard)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = bees_strength ~ treatment * yard, data = filtered_df)
##
## $yard
## diff lwr upr p adj
## Mujea-Biogaz 0.29657380 -0.1749200 0.7680676 0.2959241
## Zeytim-Biogaz 0.31381108 -0.2049253 0.8325474 0.3237290
## Zeytim-Mujea 0.01723728 -0.4920975 0.5265720 0.9964149
# Extract the Tukey HSD results for treatment:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "treatment:yard")
#print(tukey_interaction)
# Function to replace empty strings with NA
replace_empty <- function(x) {
if (is.character(x)) {
ifelse(x == "", NA, x)
} else {
x
}
}
df %>%
dplyr::filter(date == "May7th") %>%
mutate(across(everything(), ~replace_empty(.))) %>%
filter(!is.na(Queen_problems))%>%
ggplot(aes(x = treatment, fill = factor(Queen_problems), y = ..count..)) +
geom_bar(position = "dodge") +
facet_wrap(~yard) +
labs(title = "Queen condition ",
x = "Treatment",
y = "Hive count",
fill = "Queen_problems") +
# theme_minimal() +
theme(legend.position = "bottom")
Ethanol shake
p_varroa_bio = df %>%
filter(yard == "Biogaz") %>%
ggplot( aes(x = date, y = varroa, text = paste("Hive:", hive, "<br>Varroa:", varroa))) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(legend.position = "none") +
ggtitle("Varroa level, Biogaz") +
facet_wrap(~ treatment)
p_varroa_zyt = df %>%
filter(yard == "Zeytim") %>%
ggplot( aes(x = date, y = varroa, text = paste("Hive:", hive, "<br>Varroa:", varroa))) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(legend.position = "none") +
ggtitle("Varroa level, Zeytim") +
facet_wrap(~ treatment)
p_varroa_muj = df %>%
filter(yard == "Mujea") %>%
ggplot( aes(x = date, y = varroa, text = paste("Hive:", hive, "<br>Varroa:", varroa))) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(legend.position = "none") +
ggtitle("Varroa level, Mujea") +
facet_wrap(~ treatment)
# Convert the ggplot object to a plotly object and add hover information
p_varroa_bio_plotly <- ggplotly(p_varroa_bio, tooltip = "text")
p_varroa_zyt_plotly <- ggplotly(p_varroa_zyt, tooltip = "text")
p_varroa_muj_plotly <- ggplotly(p_varroa_muj, tooltip = "text")
# Print the plotly object
p_varroa_bio_plotly
p_varroa_zyt_plotly
p_varroa_muj_plotly
An increase in mite levels was observed in all yards. and in all treatments.
Among the 3 treatments, the lowest increase was observed in the towels treatment
df %>%
group_by(treatment, date) %>%
summarize(mean = mean(varroa, na.rm = TRUE), sd = sd(varroa, na.rm = TRUE))
## # A tibble: 6 × 4
## # Groups: treatment [3]
## treatment date mean sd
## <chr> <fct> <dbl> <dbl>
## 1 Control March10th 0.128 0.339
## 2 Control May7th 3.72 4.51
## 3 Towels March10th 0.308 0.838
## 4 Towels May7th 1.29 1.65
## 5 cardboards March10th 1.53 6.20
## 6 cardboards May7th 5.69 6.62
Among the 3 yards, the lowest increase was observed in Zeytim
df %>%
group_by(yard, date) %>%
summarize(mean = mean(varroa, na.rm = TRUE), sd = sd(varroa, na.rm = TRUE))
## # A tibble: 6 × 4
## # Groups: yard [3]
## yard date mean sd
## <chr> <fct> <dbl> <dbl>
## 1 Biogaz March10th 2.08 7.10
## 2 Biogaz May7th 5.19 5.46
## 3 Mujea March10th 0.179 0.389
## 4 Mujea May7th 4.59 6.33
## 5 Zeytim March10th 0.105 0.311
## 6 Zeytim May7th 1.52 2.10
filtered_df <- df %>%
filter(date == "May7th")
# Run the ANOVA
anova_result <- aov(varroa ~ treatment * yard, data = filtered_df) %>%
na.omit()
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 277.4 138.68 5.635 0.00493 **
## yard 2 182.6 91.31 3.710 0.02825 *
## treatment:yard 3 140.2 46.72 1.898 0.13544
## Residuals 91 2239.7 24.61
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 19 observations deleted due to missingness
# Diagnostic plots for ANOVA
#par(mfrow = c(2, 2)) # Set up the plotting area for 2x2 plots
#plot(anova_result)
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for treatment
tukey_treatment <- TukeyHSD(anova_result, "treatment")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ treatment * yard, data = filtered_df)
##
## $treatment
## diff lwr upr p adj
## Control-cardboards -1.968254 -4.653024 0.7165156 0.1936001
## Towels-cardboards -4.404762 -7.563922 -1.2456021 0.0036523
## Towels-Control -2.436508 -5.682236 0.8092202 0.1791334
# Extract the Tukey HSD results for yard
tukey_yard <- TukeyHSD(anova_result, "yard")
print(tukey_yard)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ treatment * yard, data = filtered_df)
##
## $yard
## diff lwr upr p adj
## Mujea-Biogaz -1.544402 -4.292610 1.2038074 0.3774609
## Zeytim-Biogaz -3.492896 -6.553172 -0.4326198 0.0211735
## Zeytim-Mujea -1.948494 -5.008770 1.1117817 0.2877416
# Extract the Tukey HSD results for treatment:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "treatment:yard")
#print(tukey_interaction)
control_df <- df %>%
filter(hive != "94") %>%
filter(treatment == "Control")
# Run the ANOVA
anova_result <- aov(varroa ~ date * yard, data = control_df)
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## date 1 241.8 241.81 27.424 1.68e-06 ***
## yard 2 57.1 28.54 3.236 0.0453 *
## date:yard 2 52.1 26.06 2.956 0.0587 .
## Residuals 69 608.4 8.82
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 5 observations deleted due to missingness
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for yard
tukey_treatment <- TukeyHSD(anova_result, "yard")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = control_df)
##
## $yard
## diff lwr upr p adj
## Mujea-Biogaz -2.0605263 -4.025395 -0.09565809 0.0377057
## Zeytim-Biogaz -1.6799397 -4.026262 0.66638244 0.2068947
## Zeytim-Mujea 0.3805866 -1.694763 2.45593649 0.8992700
# Extract the Tukey HSD results for date
tukey_date <- TukeyHSD(anova_result, "date")
print(tukey_date)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = control_df)
##
## $date
## diff lwr upr p adj
## May7th-March10th 3.594017 2.224895 4.963139 1.7e-06
# Extract the Tukey HSD results for date:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "date:yard")
print(tukey_interaction)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = control_df)
##
## $`date:yard`
## diff lwr upr p adj
## May7th:Biogaz-March10th:Biogaz 6.300000000 2.4073772 10.1926228 0.0001547
## March10th:Mujea-March10th:Biogaz -0.094736842 -3.4952897 3.3058160 0.9999995
## May7th:Mujea-March10th:Biogaz 2.273684211 -1.1268686 5.6742370 0.3756977
## March10th:Zeytim-March10th:Biogaz -0.100000000 -3.9926228 3.7926228 0.9999996
## May7th:Zeytim-March10th:Biogaz 2.942857143 -1.3466043 7.2323186 0.3468080
## March10th:Mujea-May7th:Biogaz -6.394736842 -9.7952897 -2.9941840 0.0000083
## May7th:Mujea-May7th:Biogaz -4.026315789 -7.4268686 -0.6257630 0.0111539
## March10th:Zeytim-May7th:Biogaz -6.400000000 -10.2926228 -2.5073772 0.0001172
## May7th:Zeytim-May7th:Biogaz -3.357142857 -7.6466043 0.9323186 0.2105104
## May7th:Mujea-March10th:Mujea 2.368421053 -0.4555844 5.1924265 0.1511725
## March10th:Zeytim-March10th:Mujea -0.005263158 -3.4058160 3.3952897 1.0000000
## May7th:Zeytim-March10th:Mujea 3.037593985 -0.8108767 6.8860647 0.2027099
## March10th:Zeytim-May7th:Mujea -2.373684211 -5.7742370 1.0268686 0.3276898
## May7th:Zeytim-May7th:Mujea 0.669172932 -3.1792977 4.5176436 0.9956398
## May7th:Zeytim-March10th:Zeytim 3.042857143 -1.2466043 7.3323186 0.3100994
May7th:Biogaz-March10th:Biogaz p adj = 0.0001
May7th:Mujea-March10th:Mujea p adj = 0.15
May7th:Zeytim-March10th:Zeytim p adj = 0.310
card_df <- df %>%
filter(hive != "94") %>%
filter(treatment == "cardboards")
# Run the ANOVA
anova_result <- aov(varroa ~ date * yard, data = card_df)
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## date 1 501.5 501.5 21.618 1.24e-05 ***
## yard 2 132.4 66.2 2.853 0.0633 .
## date:yard 2 93.5 46.7 2.015 0.1398
## Residuals 83 1925.4 23.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 11 observations deleted due to missingness
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for yard
tukey_treatment <- TukeyHSD(anova_result, "yard")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = card_df)
##
## $yard
## diff lwr upr p adj
## Mujea-Biogaz -0.8254766 -3.718554 2.0676006 0.7752302
## Zeytim-Biogaz -3.0989442 -6.323535 0.1256466 0.0622736
## Zeytim-Mujea -2.2734676 -5.270390 0.7234545 0.1724837
# Extract the Tukey HSD results for date
tukey_date <- TukeyHSD(anova_result, "date")
print(tukey_date)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = card_df)
##
## $date
## diff lwr upr p adj
## May7th-March10th 4.762195 2.725019 6.799372 1.24e-05
# Extract the Tukey HSD results for date:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "date:yard")
print(tukey_interaction)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = card_df)
##
## $`date:yard`
## diff lwr upr p adj
## May7th:Biogaz-March10th:Biogaz 4.0494505 -1.3625343 9.4614354 0.2568432
## March10th:Mujea-March10th:Biogaz -2.0576923 -7.0635752 2.9481906 0.8360403
## May7th:Mujea-March10th:Biogaz 4.5256410 -0.5886249 9.6399069 0.1134101
## March10th:Zeytim-March10th:Biogaz -2.2410256 -7.5654431 3.0833918 0.8219704
## May7th:Zeytim-March10th:Biogaz -0.7521368 -6.8451033 5.3408298 0.9991781
## March10th:Mujea-May7th:Biogaz -6.1071429 -11.0034745 -1.2108112 0.0061230
## May7th:Mujea-May7th:Biogaz 0.4761905 -4.5308962 5.4832771 0.9997700
## March10th:Zeytim-May7th:Biogaz -6.2904762 -11.5120298 -1.0689226 0.0090525
## May7th:Zeytim-May7th:Biogaz -4.8015873 -10.8048733 1.2016987 0.1926688
## May7th:Mujea-March10th:Mujea 6.5833333 2.0182266 11.1484401 0.0008962
## March10th:Zeytim-March10th:Mujea -0.1833333 -4.9826984 4.6160317 0.9999975
## May7th:Zeytim-March10th:Mujea 1.3055556 -4.3343669 6.9454780 0.9841968
## March10th:Zeytim-May7th:Mujea -6.7666667 -11.6789734 -1.8543600 0.0017337
## May7th:Zeytim-May7th:Mujea -5.2777778 -11.0141162 0.4585606 0.0893717
## May7th:Zeytim-March10th:Zeytim 1.4888889 -4.4355759 7.4133537 0.9772355
May7th:Biogaz-March10th:Biogaz p adj = 0.26
May7th:Mujea-March10th:Mujea p adj = 0.0009 ** significant increase in
mite level after treatment with cardboards!
May7th:Zeytim-March10th:Zeytim p adj = 0.98
towel_df <- df %>%
filter(treatment == "Towels")
# Run the ANOVA
anova_result <- aov(varroa ~ date * yard, data = towel_df)
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## date 1 11.11 11.112 8.949 0.00458 **
## yard 1 11.50 11.500 9.261 0.00398 **
## date:yard 1 6.93 6.928 5.580 0.02277 *
## Residuals 43 53.40 1.242
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 7 observations deleted due to missingness
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for yard
tukey_treatment <- TukeyHSD(anova_result, "yard")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = towel_df)
##
## $yard
## diff lwr upr p adj
## Zeytim-Biogaz -0.9888312 -1.645769 -0.331893 0.0040662
# Extract the Tukey HSD results for date
tukey_date <- TukeyHSD(anova_result, "date")
print(tukey_date)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = towel_df)
##
## $date
## diff lwr upr p adj
## May7th-March10th 0.978022 0.3186818 1.637362 0.0045834
# Extract the Tukey HSD results for date:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "date:yard")
print(tukey_interaction)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ date * yard, data = towel_df)
##
## $`date:yard`
## diff lwr upr p adj
## May7th:Biogaz-March10th:Biogaz 1.62179487 0.4296472 2.8139426 0.0039602
## March10th:Zeytim-March10th:Biogaz -0.30769231 -1.4757537 0.8603691 0.8949600
## May7th:Zeytim-March10th:Biogaz -0.23931624 -1.5306567 1.0520242 0.9597192
## March10th:Zeytim-May7th:Biogaz -1.92948718 -3.1216349 -0.7373395 0.0005000
## May7th:Zeytim-May7th:Biogaz -1.86111111 -3.1742786 -0.5479436 0.0025465
## May7th:Zeytim-March10th:Zeytim 0.06837607 -1.2229644 1.3597166 0.9989730
check that the varroa levels were similar in the begining of the experiments, prior treatment.
March_df <- df %>%
filter(date == "March10th")
# Run the ANOVA
anova_result <- aov(varroa ~ treatment * yard, data = March_df)
# Summarize the ANOVA results
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 50.0 24.98 1.616 0.2035
## yard 2 106.5 53.26 3.445 0.0355 *
## treatment:yard 3 120.8 40.25 2.604 0.0557 .
## Residuals 106 1638.8 15.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
# Perform post hoc tests using Tukey's Honest Significant Difference
tukey_result <- TukeyHSD(anova_result)
# Extract the Tukey HSD results for treatment
tukey_treatment <- TukeyHSD(anova_result, "treatment")
print(tukey_treatment)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ treatment * yard, data = March_df)
##
## $treatment
## diff lwr upr p adj
## Control-cardboards -1.4024071 -3.408120 0.6033056 0.2246295
## Towels-cardboards -1.2229199 -3.490714 1.0448744 0.4085143
## Towels-Control 0.1794872 -2.186953 2.5459269 0.9822423
# Extract the Tukey HSD results for yard
tukey_date <- TukeyHSD(anova_result, "yard")
print(tukey_date)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = varroa ~ treatment * yard, data = March_df)
##
## $yard
## diff lwr upr p adj
## Mujea-Biogaz -2.02707344 -4.172094 0.1179467 0.0681542
## Zeytim-Biogaz -1.99709959 -4.155817 0.1616174 0.0759453
## Zeytim-Mujea 0.02997385 -2.100514 2.1604614 0.9993836
# Extract the Tukey HSD results for date:yard interaction
tukey_interaction <- TukeyHSD(anova_result, "treatment:yard")
#print(tukey_interaction)