##Packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
library(dplyr)
library(purrr)
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(sjPlot)
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
library(broom)
library(ggeffects)
library(emmeans)
library(ggsignif)
library(nlme)
## 
## Attaching package: 'nlme'
## 
## The following object is masked from 'package:lme4':
## 
##     lmList
## 
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(sjPlot)
library(emmeans)
library(effects)
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(car)
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(corrplot)
## corrplot 0.92 loaded
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
#Load datasets
setwd("C:/Users/Marcel/Desktop/Bachelor Thesis/Data Analysis/Relevant R Scripts/Movement Period Data (27 - Last-Step +65)/Hurst Exponents")

# Load and filter the trial_data
execution_data <- read_excel("trial_data.xlsx") %>%
  filter(Subject != 18)  # Exclude Participant 18

# Function to filter outliers
filter_outliers <- function(data) {
  data %>%
    group_by(Subject, Block) %>%
    mutate(mean_rt = mean(trial_total_rt, na.rm = TRUE),
           sd_rt = sd(trial_total_rt, na.rm = TRUE)) %>%
    filter(abs(trial_total_rt - mean_rt) <= 2.5 * sd_rt) %>%
    dplyr::select(-mean_rt, -sd_rt)
}

# Apply the outlier filter function to the data
execution_data_filtered <- filter_outliers(execution_data)
execution_data$Block <- factor(execution_data$Block, ordered = TRUE, levels = c('1','2','3','4','5','6','7','8','9','10'))
execution_data$Trial <- as.numeric(execution_data$Trial)

# Filter data to only include accurate trials
execution_data_acc <- execution_data %>% filter(trial_acc == 1)
execution_data_filtered_acc <- execution_data_filtered %>% filter(trial_acc == 1)
#Load datasets
setwd("C:/Users/Marcel/Desktop/Bachelor Thesis/Data Analysis/Relevant R Scripts/Still Period Data/Hurst Exponents")

# Load and filter the trial_data
preparation_data <- read_excel("trial_data.xlsx") %>%
  filter(Subject != 18)  # Exclude Participant 18

# Function to filter outliers
filter_outliers <- function(data) {
  data %>%
    group_by(Subject, Block) %>%
    mutate(mean_rt = mean(trial_total_rt, na.rm = TRUE),
           sd_rt = sd(trial_total_rt, na.rm = TRUE)) %>%
    filter(abs(trial_total_rt - mean_rt) <= 2.5 * sd_rt) %>%
    dplyr::select(-mean_rt, -sd_rt)
}

# Apply the outlier filter function to the data
preparation_data_filtered <- filter_outliers(preparation_data)
preparation_data$Block <- factor(preparation_data$Block, ordered = TRUE, levels = c('1','2','3','4','5','6','7','8','9','10'))
preparation_data$Trial <- as.numeric(preparation_data$Trial)

# Filter data to only include accurate trials
preparation_data_acc <- preparation_data %>% filter(trial_acc == 1)
preparation_data_filtered_acc <- preparation_data_filtered %>% filter(trial_acc == 1)

Movement Preparation - Block 1 - ‘Fast’

Subject 6

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 6 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 6 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1367.6 -1048.6  -735.3   166.7  9524.5 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            2504.3     3384.9   0.740    0.464
## hurst_acceleration_x   -570.7     3621.7  -0.158    0.876
## 
## Residual standard error: 2073 on 40 degrees of freedom
## Multiple R-squared:  0.0006204,  Adjusted R-squared:  -0.02436 
## F-statistic: 0.02483 on 1 and 40 DF,  p-value: 0.8756

Subejct 15

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 15 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 15 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1831.5  -861.4  -165.2   488.2  4548.1 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            2810.0     1626.5   1.728   0.0929 .
## hurst_acceleration_x    581.7     1817.1   0.320   0.7508  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1267 on 35 degrees of freedom
## Multiple R-squared:  0.002919,   Adjusted R-squared:  -0.02557 
## F-statistic: 0.1025 on 1 and 35 DF,  p-value: 0.7508

Subject 28

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 28 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 28 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1427.4  -905.4  -137.7   663.4  2749.1 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4559       1133   4.023 0.000217 ***
## hurst_acceleration_x    -1098       1410  -0.778 0.440467    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1094 on 45 degrees of freedom
## Multiple R-squared:  0.01328,    Adjusted R-squared:  -0.008645 
## F-statistic: 0.6057 on 1 and 45 DF,  p-value: 0.4405

Movement Preparation - Block 1 - ‘Slow’

Subject 26

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 26 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 26 & Block == 1))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -776.9 -537.1 -138.5  386.0 2453.3 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3937.4      654.9   6.013 4.54e-07 ***
## hurst_acceleration_x   -136.8      743.5  -0.184    0.855    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 647.8 on 40 degrees of freedom
## Multiple R-squared:  0.0008462,  Adjusted R-squared:  -0.02413 
## F-statistic: 0.03388 on 1 and 40 DF,  p-value: 0.8549

Subject 23

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 23 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 23 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1456.7  -984.1  -476.1    46.5 14044.3 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            5435.4     2152.8   2.525   0.0158 *
## hurst_acceleration_x   -537.5     2914.8  -0.184   0.8547  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2482 on 39 degrees of freedom
## Multiple R-squared:  0.0008711,  Adjusted R-squared:  -0.02475 
## F-statistic: 0.034 on 1 and 39 DF,  p-value: 0.8547

Subject 35

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 35 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 35 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1692.2 -1003.1  -395.6   949.4  3156.6 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              9209       2152   4.278 0.000334 ***
## hurst_acceleration_x    -3899       2311  -1.687 0.106307    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1315 on 21 degrees of freedom
## Multiple R-squared:  0.1194, Adjusted R-squared:  0.07748 
## F-statistic: 2.848 on 1 and 21 DF,  p-value: 0.1063

Movement Preparation - Block 9 - ‘Fast’

Subject 6

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 6 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 6 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -369.88 -199.15  -50.48   51.46 1710.39 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            -127.4      641.3  -0.199    0.844
## hurst_acceleration_x    808.7      681.4   1.187    0.242
## 
## Residual standard error: 336.3 on 40 degrees of freedom
## Multiple R-squared:  0.03401,    Adjusted R-squared:  0.009864 
## F-statistic: 1.408 on 1 and 40 DF,  p-value: 0.2423

Subejct 15

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 15 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 15 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -557.51 -166.24  -44.13  130.04 1724.16 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            1113.3      663.7   1.677    0.102
## hurst_acceleration_x    148.0      716.0   0.207    0.837
## 
## Residual standard error: 360.4 on 38 degrees of freedom
## Multiple R-squared:  0.001123,   Adjusted R-squared:  -0.02516 
## F-statistic: 0.0427 on 1 and 38 DF,  p-value: 0.8374

Subject 28

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 28 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 28 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -523.42  -72.89  -21.77   49.42 1235.28 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1839.0      325.0   5.658 1.07e-06 ***
## hurst_acceleration_x   -572.3      365.0  -1.568    0.124    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 233.2 on 44 degrees of freedom
## Multiple R-squared:  0.0529, Adjusted R-squared:  0.03138 
## F-statistic: 2.458 on 1 and 44 DF,  p-value: 0.1241

Movement Preparation - Block 9 - ‘Slow’

Subject 26

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 26 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 26 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -693.42 -260.60  -52.16   97.95 1626.32 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3384.4      583.6   5.799 7.16e-07 ***
## hurst_acceleration_x    226.9      677.4   0.335    0.739    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 470.7 on 43 degrees of freedom
## Multiple R-squared:  0.002603,   Adjusted R-squared:  -0.02059 
## F-statistic: 0.1122 on 1 and 43 DF,  p-value: 0.7393

Subject 23

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 23 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 23 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -482.52  -78.64   -4.86   99.63  858.08 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            2527.2      195.3  12.943   <2e-16 ***
## hurst_acceleration_x   -335.7      266.7  -1.259    0.215    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 241.3 on 45 degrees of freedom
## Multiple R-squared:  0.03401,    Adjusted R-squared:  0.01254 
## F-statistic: 1.584 on 1 and 45 DF,  p-value: 0.2146

Subject 35

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 35 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 35 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1021.0  -403.0  -251.7   414.4  4947.6 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            2112.6      883.9   2.390   0.0215 *
## hurst_acceleration_x   1200.3     1091.8   1.099   0.2780  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 933.7 on 41 degrees of freedom
## Multiple R-squared:  0.02863,    Adjusted R-squared:  0.004942 
## F-statistic: 1.209 on 1 and 41 DF,  p-value: 0.278

Movement Preparation - Block 10 - ‘Fast’

Subject 6

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 6 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 6 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -650.74 -247.23 -139.98   76.71 1283.74 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            1368.3     1142.2   1.198    0.238
## hurst_acceleration_x   -481.6     1206.1  -0.399    0.692
## 
## Residual standard error: 440.4 on 40 degrees of freedom
## Multiple R-squared:  0.00397,    Adjusted R-squared:  -0.02093 
## F-statistic: 0.1594 on 1 and 40 DF,  p-value: 0.6918

Subejct 15

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 15 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 15 & Block == 10))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -613.3 -298.2 -127.8  199.6 1436.9 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            2252.7      943.6   2.387   0.0213 *
## hurst_acceleration_x   -961.9      995.0  -0.967   0.3390  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 458.9 on 44 degrees of freedom
## Multiple R-squared:  0.0208, Adjusted R-squared:  -0.001456 
## F-statistic: 0.9346 on 1 and 44 DF,  p-value: 0.339

Subject 28

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 28 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 28 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -512.34 -116.46  -11.29   53.80  610.05 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1741.0      352.7   4.936 1.38e-05 ***
## hurst_acceleration_x   -435.4      393.4  -1.107    0.275    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 221.1 on 41 degrees of freedom
## Multiple R-squared:  0.02901,    Adjusted R-squared:  0.005329 
## F-statistic: 1.225 on 1 and 41 DF,  p-value: 0.2748

Movement Preparation - Block 10 - ‘Slow’

Subject 26

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 26 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 26 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -966.88 -350.19  -49.11  243.93 1041.82 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4283.0      510.9   8.383 5.53e-10 ***
## hurst_acceleration_x   -660.1      580.0  -1.138    0.263    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 491.3 on 36 degrees of freedom
## Multiple R-squared:  0.03472,    Adjusted R-squared:  0.007909 
## F-statistic: 1.295 on 1 and 36 DF,  p-value: 0.2627

Subject 23

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 23 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 23 & Block == 10))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -999.6 -521.0 -129.8  360.6 2298.1 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4206.9      576.1   7.303 6.19e-09 ***
## hurst_acceleration_x   -432.0      788.8  -0.548    0.587    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 688.7 on 41 degrees of freedom
## Multiple R-squared:  0.007262,   Adjusted R-squared:  -0.01695 
## F-statistic: 0.2999 on 1 and 41 DF,  p-value: 0.5869

Subject 35

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, subset = (Subject == 35 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = preparation_data_acc, 
##     subset = (Subject == 35 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1910.5 -1065.9  -156.3   896.8  2393.2 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              3609       1028   3.510   0.0011 **
## hurst_acceleration_x     1203       1317   0.914   0.3663   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1180 on 41 degrees of freedom
## Multiple R-squared:  0.01995,    Adjusted R-squared:  -0.003951 
## F-statistic: 0.8347 on 1 and 41 DF,  p-value: 0.3663

Sequence Execution - Block 1 - ‘Fast’

Subject 6

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 6 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 6 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1816.7  -942.0  -143.9   182.6  8148.3 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             -3639       1595  -2.281 0.027946 *  
## hurst_acceleration_x     7027       1967   3.573 0.000939 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1806 on 40 degrees of freedom
## Multiple R-squared:  0.2419, Adjusted R-squared:  0.223 
## F-statistic: 12.77 on 1 and 40 DF,  p-value: 0.0009387

Subject 15

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 15 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 15 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1495.2  -841.9  -221.9   516.1  4169.5 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)           -316852     116122  -2.729  0.00988 **
## hurst_acceleration_x   321887     116742   2.757  0.00920 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1150 on 35 degrees of freedom
## Multiple R-squared:  0.1785, Adjusted R-squared:  0.155 
## F-statistic: 7.602 on 1 and 35 DF,  p-value: 0.009199

Subject 28

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 28 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 28 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1458.8  -891.2  -416.9   717.7  2672.1 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            254614     214299   1.188    0.241
## hurst_acceleration_x  -251741     214993  -1.171    0.248
## 
## Residual standard error: 1085 on 45 degrees of freedom
## Multiple R-squared:  0.02957,    Adjusted R-squared:  0.008002 
## F-statistic: 1.371 on 1 and 45 DF,  p-value: 0.2478

Sequence Execution - Block 1 - ‘Slow’

Subject 26

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 26 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 26 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -763.24 -532.97  -63.24  354.73 2441.43 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)           -132710     305586  -0.434    0.666
## hurst_acceleration_x   136884     306382   0.447    0.657
## 
## Residual standard error: 646.5 on 40 degrees of freedom
## Multiple R-squared:  0.004965,   Adjusted R-squared:  -0.01991 
## F-statistic: 0.1996 on 1 and 40 DF,  p-value: 0.6574

Subject 23

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 23 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 23 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1451.9 -1016.3  -512.4   -15.0 14073.1 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            -92151     417505  -0.221    0.826
## hurst_acceleration_x    97560     419072   0.233    0.817
## 
## Residual standard error: 2481 on 39 degrees of freedom
## Multiple R-squared:  0.001388,   Adjusted R-squared:  -0.02422 
## F-statistic: 0.0542 on 1 and 39 DF,  p-value: 0.8171

Subject 35

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 35 & Block == 1))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 35 & Block == 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1658.5 -1073.6  -235.5   722.6  3192.8 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)             12220       5946   2.055   0.0525 .
## hurst_acceleration_x    -6715       6030  -1.114   0.2780  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1361 on 21 degrees of freedom
## Multiple R-squared:  0.05576,    Adjusted R-squared:  0.01079 
## F-statistic:  1.24 on 1 and 21 DF,  p-value: 0.278

Sequence Execution - Block 9 - ‘Fast’

Subject 6

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 6 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 6 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -481.28 -199.56  -25.02  118.49 1440.17 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1222.8      267.2   4.577 4.51e-05 ***
## hurst_acceleration_x   -778.7      345.5  -2.254   0.0298 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 322.3 on 40 degrees of freedom
## Multiple R-squared:  0.1127, Adjusted R-squared:  0.0905 
## F-statistic:  5.08 on 1 and 40 DF,  p-value: 0.02976

Subject 15

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 15 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 15 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -554.46 -175.19  -25.43  135.98 1714.24 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1441.9      359.1   4.015  0.00027 ***
## hurst_acceleration_x   -278.5      514.7  -0.541  0.59161    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 359.2 on 38 degrees of freedom
## Multiple R-squared:  0.007646,   Adjusted R-squared:  -0.01847 
## F-statistic: 0.2928 on 1 and 38 DF,  p-value: 0.5916

Subject 28

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 28 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 28 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -493.46  -93.83  -22.98   51.81 1307.54 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)             -8198      22467  -0.365    0.717
## hurst_acceleration_x     9597      22623   0.424    0.673
## 
## Residual standard error: 239.1 on 44 degrees of freedom
## Multiple R-squared:  0.004073,   Adjusted R-squared:  -0.01856 
## F-statistic:  0.18 on 1 and 44 DF,  p-value: 0.6735

Sequence Execution - Block 9 - ‘Slow’

Subject 26

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 26 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 26 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -803.14 -227.19  -61.14  182.92 1252.81 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            599680     169426   3.539 0.000977 ***
## hurst_acceleration_x  -597751     169895  -3.518 0.001040 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 415.3 on 43 degrees of freedom
## Multiple R-squared:  0.2235, Adjusted R-squared:  0.2055 
## F-statistic: 12.38 on 1 and 43 DF,  p-value: 0.00104

Subject 23

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 23 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 23 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -525.28 -106.14   16.72  134.18  702.89 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            169655      57232   2.964  0.00484 **
## hurst_acceleration_x  -167937      57426  -2.924  0.00539 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 225.1 on 45 degrees of freedom
## Multiple R-squared:  0.1597, Adjusted R-squared:  0.141 
## F-statistic: 8.552 on 1 and 45 DF,  p-value: 0.005387

Subject 35

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 35 & Block == 9))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 35 & Block == 9))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1830.3  -355.8   -26.4   260.5  1215.9 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             29877       3219   9.282 1.25e-11 ***
## hurst_acceleration_x   -27122       3256  -8.331 2.34e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 577.3 on 41 degrees of freedom
## Multiple R-squared:  0.6286, Adjusted R-squared:  0.6196 
## F-statistic: 69.41 on 1 and 41 DF,  p-value: 2.337e-10

Sequence Execution - Block 10 - ‘Fast’

Subject 6

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 6 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 6 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -670.93 -269.05  -15.64  115.11  988.74 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            -769.0      493.6  -1.558   0.1271   
## hurst_acceleration_x   2047.3      596.3   3.433   0.0014 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 387.8 on 40 degrees of freedom
## Multiple R-squared:  0.2276, Adjusted R-squared:  0.2083 
## F-statistic: 11.79 on 1 and 40 DF,  p-value: 0.001401

Subject 15

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 15 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 15 & Block == 10))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -763.9 -264.1 -161.2  169.6 1325.5 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)             633.8      406.8   1.558   0.1264  
## hurst_acceleration_x    937.3      530.7   1.766   0.0843 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 448.1 on 44 degrees of freedom
## Multiple R-squared:  0.06621,    Adjusted R-squared:  0.04499 
## F-statistic:  3.12 on 1 and 44 DF,  p-value: 0.08428

Subject 28

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 28 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 28 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -559.48 -101.73  -23.53   81.59  673.85 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            -50.22    2010.74  -0.025    0.980
## hurst_acceleration_x  1418.07    2032.64   0.698    0.489
## 
## Residual standard error: 223 on 41 degrees of freedom
## Multiple R-squared:  0.01173,    Adjusted R-squared:  -0.01237 
## F-statistic: 0.4867 on 1 and 41 DF,  p-value: 0.4893

Sequence Execution - Block 10 - ‘Slow’

Subject 26

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 26 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 26 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -947.99 -291.78  -12.82  248.75  962.81 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             90543      23893   3.790 0.000554 ***
## hurst_acceleration_x   -87223      24000  -3.634 0.000863 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 427.7 on 36 degrees of freedom
## Multiple R-squared:  0.2684, Adjusted R-squared:  0.2481 
## F-statistic: 13.21 on 1 and 36 DF,  p-value: 0.000863

Subject 23

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 23 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 23 & Block == 10))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1044.56  -320.70   -41.29   286.92  2165.14 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           -216864      82033  -2.644   0.0116 *
## hurst_acceleration_x   221572      82335   2.691   0.0103 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 637.2 on 41 degrees of freedom
## Multiple R-squared:  0.1501, Adjusted R-squared:  0.1294 
## F-statistic: 7.242 on 1 and 41 DF,  p-value: 0.01026

Subject 35

model <- lm(trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, subset = (Subject == 35 & Block == 10))
summary(model)
## 
## Call:
## lm(formula = trial_total_rt ~ hurst_acceleration_x, data = execution_data_acc, 
##     subset = (Subject == 35 & Block == 10))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1967.0  -939.0  -122.9   803.4  2460.4 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)              8163       3185   2.563   0.0141 *
## hurst_acceleration_x    -3697       3240  -1.141   0.2604  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1174 on 41 degrees of freedom
## Multiple R-squared:  0.03079,    Adjusted R-squared:  0.007147 
## F-statistic: 1.302 on 1 and 41 DF,  p-value: 0.2604

Functions for easier interpretation

# Function to calculate correlation, display results, and plot for Blocks 1, 9, and 10
calculate_correlation_and_plot <- function(subject, data, phase, acceleration_axis = "hurst_acceleration_x") {
  blocks <- c(1, 9, 10)  # Specify the blocks to analyze

  phase_label <- ifelse(phase == 'execution', 'Sequence Execution', 'Movement Preparation')
  
  for (block in blocks) {
    # Filter data for specific subject and block
    filtered_data <- data %>% filter(Subject == subject, Block == block)
    
    if(nrow(filtered_data) > 0) {
      # Calculate correlation
      correlation_result <- cor.test(filtered_data[[acceleration_axis]], filtered_data$trial_total_rt)
      
      # Extract correlation coefficient and p-value
      corr_coef <- correlation_result$estimate
      p_value <- correlation_result$p.value
      
      # Format p-value for readability
      formatted_p_value <- ifelse(p_value < 0.0001, "< 0.0001", format(p_value, digits = 4))
      
      # Prepare annotation text
      annotation_text <- paste("Correlation coefficient:", round(corr_coef, 4), "\n",
                               "p-value:", formatted_p_value)
      
      # Plot data
      plot <- ggplot(filtered_data, aes(x = !!sym(acceleration_axis), y = trial_total_rt)) +
        geom_point() +
        geom_smooth(method = "lm", se = FALSE, color = "blue") +
        labs(title = paste("Correlation for Subject", subject, "in Block", block, "-", phase_label),
             x = acceleration_axis,
             y = "Trial Total Response Time") +
        annotate("text", x = Inf, y = Inf, label = annotation_text, hjust = 1.1, vjust = 2, size = 4, color = "black") +
        theme_minimal()
      
      # Display plot
      print(plot)
    } else {
      cat("Subject:", subject, "Block:", block, "- No data available\n\n")
    }
  }
}

Subject 6

Movement Preparation

calculate_correlation_and_plot(subject = 6, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 6, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 6, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution

calculate_correlation_and_plot(subject = 6, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 6, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 6, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Subject 15

Movement Preparation

calculate_correlation_and_plot(subject = 15, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 15, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 15, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution

calculate_correlation_and_plot(subject = 15, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 15, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 15, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Subject 28

Movement Preparation

calculate_correlation_and_plot(subject = 28, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 28, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 28, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution

calculate_correlation_and_plot(subject = 28, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 28, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 28, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Subject 26

Movement Preparation

calculate_correlation_and_plot(subject = 26, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 26, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 26, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution

calculate_correlation_and_plot(subject = 26, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 26, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 26, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Subject 23

Movement Preparation

calculate_correlation_and_plot(subject = 23, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 23, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 23, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution

calculate_correlation_and_plot(subject = 23, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 23, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 23, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Subject 35

Movement Preparation

calculate_correlation_and_plot(subject = 35, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 35, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 35, data = preparation_data_filtered_acc, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution

calculate_correlation_and_plot(subject = 35, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 35, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot(subject = 35, data = execution_data_filtered_acc, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

Time Series and State Space Plots:

generate_plots <- function(subject, phase, block, acceleration_axis) {
  # Select the appropriate dataset based on the phase
  data <- if (phase == 'execution') {
    execution_data
  } else if (phase == 'preparation') {
    preparation_data
  } else {
    stop("Invalid phase. Choose 'execution' or 'preparation'.")
  }
  
  # Filter data for specific subject and block
  filtered_data <- data %>% filter(Subject == subject, Block == block)
  
  # Define y-axis label based on the selected acceleration axis
  y_label <- switch(acceleration_axis,
                    hurst_acceleration_x = "Hurst Exponent (X Axis)",
                    hurst_acceleration_y = "Hurst Exponent (Y Axis)",
                    hurst_acceleration_z = "Hurst Exponent (Z Axis)",
                    stop("Invalid acceleration axis. Choose 'hurst_acceleration_x', 'hurst_acceleration_y', or 'hurst_acceleration_z'."))
  
  # Time series plot
  time_series_plot <- ggplot(filtered_data, aes(x = Trial, y = !!sym(acceleration_axis))) +
    geom_line() +
    geom_point() +
    labs(title = paste("Time Series and State Space for Subject", subject, "in Block", block, "-", acceleration_axis),
         x = "Trial",
         y = y_label) +
    theme_minimal()
  
  # Calculate change in Hurst exponent
  filtered_data <- filtered_data %>%
    arrange(Trial) %>%
    mutate(change_hurst = c(NA, diff(!!sym(acceleration_axis))))
  
  # Remove NA values
  filtered_data <- filtered_data %>% filter(!is.na(change_hurst))
  
  # Scatter plot with regression line
  scatter_plot <- ggplot(filtered_data, aes(x = !!sym(acceleration_axis), y = change_hurst)) +
    geom_point() +
    geom_smooth(method = "lm", formula = y ~ poly(x, 3), se = FALSE, color = "darkorchid4") +
    geom_hline(yintercept = 0, color = "antiquewhite4") +
    labs(title = " ",
         x = y_label,
         y = paste("Change in", y_label)) +
    theme_minimal()
  
  # Arrange the plots side by side using gridExtra
  combined_plot <- grid.arrange(time_series_plot, scatter_plot, ncol = 2)
  
  return(combined_plot)
}

Subject 6

Movement Preparation:

generate_plots(subject = 6, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Sequence Execution:

generate_plots(subject = 6, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 6, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Subject 15

Movement Preparation:

generate_plots(subject = 15, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Sequence Execution:

generate_plots(subject = 15, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 15, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Subject 28

Movement Preparation:

generate_plots(subject = 28, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Sequence Execution:

generate_plots(subject = 28, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 28, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Subject 26

Movement Preparation:

generate_plots(subject = 26, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Sequence Execution:

generate_plots(subject = 26, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 26, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Subject 23

Movement Preparation:

generate_plots(subject = 23, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Sequence Execution:

generate_plots(subject = 23, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 23, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Subject 35

Movement Preparation:

generate_plots(subject = 35, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'preparation', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Sequence Execution:

generate_plots(subject = 35, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 1, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 9, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_x')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_y')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
generate_plots(subject = 35, phase = 'execution', block = 10, acceleration_axis = 'hurst_acceleration_z')

## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
# Function to calculate correlation, display results, and plot for a given block
calculate_correlation_and_plot_all <- function(block, data, phase, acceleration_axis = "hurst_acceleration_x") {
  phase_label <- ifelse(phase == 'execution', 'Sequence Execution', 'Movement Preparation')
  
  # Filter data for the specified block
  filtered_data <- data %>% filter(Block == block)
  
  if(nrow(filtered_data) > 0) {
    # Calculate correlation
    correlation_result <- cor.test(filtered_data[[acceleration_axis]], filtered_data$trial_total_rt)
    
    # Extract correlation coefficient and p-value
    corr_coef <- correlation_result$estimate
    p_value <- correlation_result$p.value
    
    # Format p-value for readability
    formatted_p_value <- ifelse(p_value < 0.0001, "< 0.0001", format(p_value, digits = 4))
    
    # Prepare annotation text
    annotation_text <- paste("Correlation coefficient:", round(corr_coef, 4), "\n",
                             "p-value:", formatted_p_value)
    
    # Plot data
    plot <- ggplot(filtered_data, aes(x = !!sym(acceleration_axis), y = trial_total_rt)) +
      geom_point() +
      geom_smooth(method = "lm", se = FALSE, color = "blue") +
      labs(title = paste("Correlation for All Participants in Block", block, "-", phase_label),
           x = acceleration_axis,
           y = "Trial Total Response Time") +
      annotate("text", x = Inf, y = Inf, label = annotation_text, hjust = 1.1, vjust = 2, size = 4, color = "black") +
      theme_minimal()
    
    # Display plot
    print(plot)
  } else {
    cat("Block:", block, "- No data available\n\n")
  }
}

Movement Preparation Phase

calculate_correlation_and_plot_all(block = 1, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 9, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 10, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 1, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 9, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 10, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 1, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 9, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 10, data = preparation_data, phase = 'preparation', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

Sequence Execution Phase

calculate_correlation_and_plot_all(block = 1, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 9, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 10, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_x")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 1, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 9, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 10, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_y")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 1, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 9, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'

calculate_correlation_and_plot_all(block = 10, data = execution_data, phase = 'execution', acceleration_axis = "hurst_acceleration_z")
## `geom_smooth()` using formula = 'y ~ x'