Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(nations)
# A tibble: 6 × 10
iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AD AND Andorra 1996 NA 64291 10.9 2.8
2 AD AND Andorra 1994 NA 62707 10.9 3.2
3 AD AND Andorra 2003 NA 74783 10.3 2
4 AD AND Andorra 1990 NA 54511 11.9 4.3
5 AD AND Andorra 2009 NA 85474 9.9 1.7
6 AD AND Andorra 2011 NA 82326 NA 1.6
# ℹ 2 more variables: region <chr>, income <chr>
# A tibble: 6 × 11
iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 CN CHN China 1992 1260. 1164970000 18.3 29.4
2 CN CHN China 2005 5053. 1303720000 12.4 14
3 CN CHN China 2000 2915. 1262645000 14.0 21.2
4 CN CHN China 1991 1091. 1150780000 19.7 29.7
5 CN CHN China 2013 12219. 1357380000 12.1 6.3
6 CN CHN China 1999 2650. 1252735000 14.6 22.2
# ℹ 3 more variables: region <chr>, income <chr>, gdp_tn <dbl>
#Plot GDP of four countries
ggplot(big4,aes(x = year, y = gdp_tn, color = country)) +geom_point() +geom_line()+xlab("Year") +ylab("GDP in Trillions") +ggtitle("China's Rise to Become the Largest Economy") +scale_fill_brewer(palette ="Set1") +theme(axis.text.x =element_text(angle =50, hjust =1))