d <- read.csv('https://stats.dip.jp/01_ds/data/real_estate_price.csv')[,-1]

library(DT)
datatable(d)
library(psych)
pairs.panels(d)

library(ggcorrplot)
library(plotly)
cor(d) |> ggcorrplot(lab = T, hc.order = T, outline.color = "white", p.mat = cor_pmat(d)) |> ggplotly() |>
layout(font  = list(size = 11, color = 'blue', family = 'UD Digi Kyokasho NK-R'),
       title = '新台湾市の住宅価格',
       xaxis = list(title = 'x軸'),
       yaxis = list(title = 'y軸'))
fit <- lm(price ~ yr + yrs_old + m_sta + nstores + lat + lon, data = d)
summary(fit)
## 
## Call:
## lm(formula = price ~ yr + yrs_old + m_sta + nstores + lat + lon, 
##     data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -35.520  -5.272  -0.992   4.165  75.338 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -9.860e+03  6.349e+03  -1.553  0.12124    
## yr           2.937e+00  9.503e-01   3.091  0.00213 ** 
## yrs_old     -2.747e-01  3.864e-02  -7.110 5.25e-12 ***
## m_sta       -4.370e-03  7.168e-04  -6.097 2.51e-09 ***
## nstores      1.162e+00  1.883e-01   6.171 1.64e-09 ***
## lat          2.345e+02  4.450e+01   5.269 2.23e-07 ***
## lon         -1.534e+01  4.870e+01  -0.315  0.75301    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.872 on 407 degrees of freedom
## Multiple R-squared:  0.581,  Adjusted R-squared:  0.5748 
## F-statistic: 94.06 on 6 and 407 DF,  p-value: < 2.2e-16
library(sjPlot)
tab_model(fit, show.stat = T, show.aic = T)
  price
Predictors Estimates CI Statistic p
(Intercept) -9859.50 -22341.02 – 2622.02 -1.55 0.121
yr 2.94 1.07 – 4.81 3.09 0.002
yrs old -0.27 -0.35 – -0.20 -7.11 <0.001
m sta -0.00 -0.01 – -0.00 -6.10 <0.001
nstores 1.16 0.79 – 1.53 6.17 <0.001
lat 234.47 147.00 – 321.94 5.27 <0.001
lon -15.34 -111.08 – 80.40 -0.31 0.753
Observations 414
R2 / R2 adjusted 0.581 / 0.575
AIC 2991.283
plot_model(fit, show.values = T, show.intercept = T, width = 0.1)

plot(fit)