# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
#choose stocks
symbols <- c("NFLX", "TSLA", "GOOG", "COST")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "COST" "GOOG" "NFLX" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 COST 0.25
## 2 GOOG 0.25
## 3 NFLX 0.25
## 4 TSLA 0.25
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.196
## 2 2013-02-28 0.0265
## 3 2013-03-28 0.0321
## 4 2013-04-30 0.136
## 5 2013-05-31 0.177
## 6 2013-06-28 0.0108
## 7 2013-07-31 0.110
## 8 2013-08-30 0.0716
## 9 2013-09-30 0.0707
## 10 2013-10-31 0.00978
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "SPY",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert Prices to Returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
market_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0499
## 2 2013-02-28 0.0127
## 3 2013-03-28 0.0373
## 4 2013-04-30 0.0190
## 5 2013-05-31 0.0233
## 6 2013-06-28 -0.0134
## 7 2013-07-31 0.0504
## 8 2013-08-30 -0.0305
## 9 2013-09-30 0.0312
## 10 2013-10-31 0.0453
## # ℹ 50 more rows
portfolio_market_returns_tbl <- left_join(market_returns_tbl, portfolio_returns_tbl, by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl
## # A tibble: 60 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0499 0.196
## 2 2013-02-28 0.0127 0.0265
## 3 2013-03-28 0.0373 0.0321
## 4 2013-04-30 0.0190 0.136
## 5 2013-05-31 0.0233 0.177
## 6 2013-06-28 -0.0134 0.0108
## 7 2013-07-31 0.0504 0.110
## 8 2013-08-30 -0.0305 0.0716
## 9 2013-09-30 0.0312 0.0707
## 10 2013-10-31 0.0453 0.00978
## # ℹ 50 more rows
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta )
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.981
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE, size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
My portfolio, as shown by the graph, is not that sensitive to the market, due to the points not being that clustered around the line. Although it has a beta of .981, which means we should see the portfolio volatility be more in line with the market volatility