date: “2024-06-20” editor_options: chunk_output_type: console —
diamonds %>%
ggplot(aes(x = cut )) +
geom_bar()
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat <3) %>%
# Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)
faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25)
diamonds %>%
ggplot(aes(y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
ggplot(aes(y)) +
geom_histogram() +
coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Missing Values
diamonds %>%
#Filter(y<3|y>20) %>%
mutate(y=ifelse(y<3|y>20,NA,y)) %>%
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Covariation
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price )) +
geom_hex()
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat, y = price )) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds2 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds2 %>%
ggplot(aes(carat, resid)) +
geom_point()
diamonds2 %>%
ggplot(aes(cut, resid)) +
geom_boxplot()