This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the plot. #
Module 12 # Ellie Spencer # Intro to R
setwd(“C:/Users/u1317304/OneDrive - University of Utah/GEOG 5680/countries”)
path_to_data <- system.file(“shape/nc.shp”, package=“sf”)
north_carolina <- st_read(path_to_data, quiet = TRUE)
north_carolina <- north_carolina[ , c(“CNTY_ID”, “NAME”, “AREA”, “PERIMETER”)]
north_carolina
point_one <- st_point(c(0, 3))
point_two <- st_point(c(5, 7))
a_line <- st_linestring(c(point_one, point_two))
point_one
a_line
st_geometry_type(a_line)
st_geometry_type(north_carolina[1, ])
st_crs(4326)
st_crs(4326)$proj4string
st_bbox(north_carolina)
utah <- st_read(dsn = “./utahcounty/utahcounty.shp”, layer = “utahcounty”, drivers = “ESRI Shapefile”)
utah <- st_read(“./utahcounty/utahcounty.shp”) plot(st_geometry(utah)) wna_climate <- read.csv(“./WNAclimate.csv”) head(wna_climate) wna_climate <- st_as_sf(wna_climate, coords = c(“LONDD”, “LATDD”), crs = 4326)
wna_climate plot(st_geometry(wna_climate), pch = 19, col = alpha(“darkgreen”, 0.5)) st_write(obj = wna_climate, dsn = “./wnaclim.shp”, layer = “wnaclim”, drivers = “ESRI Shapefile”) st_write(wna_climate, dsn = “./wnaclim.shp”) st_crs(utah) utah <- st_set_crs(utah, 4326)
st_crs(utah) <- 4326 utah <- st_transform(utah, crs = 32612)
st_crs(utah) st_crs(utah)\(epsg st_crs(wna_climate)\)epsg format(st_crs(utah)) class(utah) utah
utah2 <- utah[ , c(“NAME”, “FIPS”, “POP_CURRES”)]
library(dplyr) utah2 <- utah %>% select(NAME, FIPS, POP_CURRES)
names(utah) names(utah2) extract(b5, cbind(615000,4199000))
library(sf) library(ggplot2) library(terra) library(RColorBrewer) library(viridis)
shapefile_path <- (“C:317304- University of Utah.shp”) countries_sf <-st_read(shapefile_path) countries_terra <- vect(“C:317304- University of Utah.shp”) countries <- st_as_sf(countries_terra)
head(countries)
ggplot(data = countries) + geom_sf(aes(fill = gdp_md_est)) + scale_fill_viridis(option = “plasma”, trans = “log10”) + theme_minimal() + labs(title = “Median GDP of Countries”, fill = “GDP (log scale)”)
ggplot(data = countries) + geom_sf(aes(fill = income_grp)) + scale_fill_brewer(palette = “Set3”) + theme_minimal() + labs(title = “Income Group of Countries”, fill = “Income Group”)
setwd(“C:/Users/u1317304/OneDrive - University of Utah/GEOG 5680/countries”)
library(raster) library(terra) library(sf) library(ggplot2) library(RColorBrewer) library(dplyr)
b4_path <- “path_to_band4.tif” b5_path <- “path_to_band5.tif” b4 <- raster(b4_path) b5 <- raster(b5_path)
ndvi <- (b5 - b4) / (b5 + b4)
plot(ndvi, col=rev(terrain.colors(10)), main = “NDVI”) hist(ndvi, main = “NDVI”)
water <- ndvi < 0 plot(water)
bethel <- ca_places %>% dplyr::filter(NAME == “Bethel Island”) oakley <- ca_places %>% dplyr::filter(NAME == “Oakley”)
bethel_sp <- as(bethel, “Spatial”) oakley_sp <- as(oakley, “Spatial”)
ndvi_bethel <- mask(ndvi, bethel_sp) ndvi_bethel <- crop(ndvi_bethel, bethel_sp)
ndvi_oakley <- mask(ndvi, oakley_sp) ndvi_oakley <- crop(ndvi_oakley, oakley_sp)
median_ndvi_bethel <- cellStats(ndvi_bethel, stat = ‘median’, na.rm = TRUE) cat(“Median NDVI for Bethel Island:”, median_ndvi_bethel, “”)
median_ndvi_oakley <- cellStats(ndvi_oakley, stat = ‘median’, na.rm = TRUE) cat(“Median NDVI for Oakley:”, median_ndvi_oakley, “”)
plot(ndvi_bethel, col=rev(terrain.colors(10)), main = “NDVI - Bethel Island”) plot(st_geometry(bethel), add = TRUE)
plot(ndvi_oakley, col=rev(terrain.colors(10)), main = “NDVI - Oakley”) plot(st_geometry(oakley), add = TRUE)
random_pnts_bethel <- st_sample(bethel, size = 20) ndvi_values_bethel <- extract(ndvi, st_coordinates(random_pnts_bethel))
random_pnts_oakley <- st_sample(oakley, size = 20) ndvi_values_oakley <- extract(ndvi, st_coordinates(random_pnts_oakley))
ndvi_combined <- data.frame( ID = rep(c(“Bethel Island”, “Oakley”), each = 20), NDVI = c(ndvi_values_bethel, ndvi_values_oakley) )
ggplot(ndvi_combined, aes(x = NDVI, fill = ID)) + geom_histogram(alpha = 0.7, position = ‘identity’, bins = 30) + labs(title = “Histogram of NDVI Values”, x = “NDVI”, fill = “Location”) + theme_minimal()