# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("NDAQ", "SNEX", "ICE", "CME")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "CME" "ICE" "NDAQ" "SNEX"
# weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 CME 0.25
## 2 ICE 0.25
## 3 NDAQ 0.25
## 4 SNEX 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 138 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0944
## 2 2013-02-28 0.0676
## 3 2013-03-28 0.0219
## 4 2013-04-30 -0.0295
## 5 2013-05-31 0.0652
## 6 2013-06-28 0.0460
## 7 2013-07-31 0.0120
## 8 2013-08-30 -0.0249
## 9 2013-09-30 0.0481
## 10 2013-10-31 0.0410
## # ℹ 128 more rows
market_returns_tbl <- tq_get(x = "NDAQ",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1)
portfolio_market_tbl <- left_join(market_returns_tbl, portfolio_returns_tbl, by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.647
portfolio_market_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant:: palette_light()[3]) +
labs(y = "portfolio returns",
x = "market returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
The portfolio is right in line with the market having a similar look as the Code Along example, however the plots on my regression line are spread further apart. my beta of 0.647 is lower than the market value meaning that it is less risky