# Filter the data for the pitcher Martinez
Martinez_data <- Adams619 %>%
filter(Pitcher == 'Martinez, Matthew')
# Create a detailed table for each pitch
detailed_pitch_table <- Martinez_data %>%
select(AutoPitchType, RelSpeed, SpinRate, SpinAxis, HorzBreak, InducedVertBreak, PitchCall, RelHeight, RelSide, Extension) %>%
rename(
ReleaseSpeed = RelSpeed,
Tilt = SpinAxis,
HorizontalBreak = HorzBreak,
InducedVerticalBreak = InducedVertBreak,
ReleaseHeight = RelHeight,
ReleaseSide = RelSide
) %>%
mutate(
ReleaseSpeed = round(ReleaseSpeed, 2),
SpinRate = round(SpinRate, 2),
Tilt = round(Tilt, 2),
HorizontalBreak = round(HorizontalBreak, 2),
InducedVerticalBreak = round(InducedVerticalBreak, 2),
ReleaseHeight = round(ReleaseHeight, 2),
ReleaseSide = round(ReleaseSide, 2),
Extension = round(Extension, 2),
ClockTilt = round((Tilt / 30) %% 12, 1) # Interpret Tilt as clock face
)
# Display the detailed table
knitr::kable(detailed_pitch_table, caption = 'Detailed Pitch Table for Martinez')
Detailed Pitch Table for Martinez
| Changeup |
89.00 |
1705.01 |
225.03 |
10.73 |
11.84 |
BallCalled |
6.42 |
1.21 |
4.11 |
7.5 |
| Changeup |
78.05 |
1797.40 |
261.56 |
14.80 |
3.73 |
BallCalled |
6.15 |
1.67 |
3.83 |
8.7 |
| Changeup |
78.33 |
1782.10 |
257.37 |
15.72 |
5.08 |
StrikeCalled |
6.13 |
1.80 |
4.00 |
8.6 |
| Curveball |
77.53 |
2615.24 |
62.65 |
-14.19 |
-5.84 |
StrikeCalled |
6.29 |
1.59 |
3.70 |
2.1 |
| Sinker |
89.91 |
1863.03 |
228.93 |
19.48 |
18.19 |
BallCalled |
6.46 |
1.04 |
4.09 |
7.6 |
| Changeup |
80.23 |
1802.23 |
252.10 |
15.62 |
6.53 |
InPlay |
6.14 |
1.72 |
4.14 |
8.4 |
| Curveball |
75.51 |
2447.47 |
45.18 |
-7.94 |
-6.29 |
BallCalled |
6.27 |
1.66 |
3.73 |
1.5 |
| Curveball |
76.87 |
2509.85 |
25.38 |
-4.78 |
-8.52 |
BallCalled |
6.29 |
1.59 |
3.89 |
0.8 |
| Sinker |
89.47 |
2037.57 |
225.69 |
14.25 |
15.15 |
StrikeCalled |
6.39 |
1.21 |
4.29 |
7.5 |
| Changeup |
80.23 |
1689.52 |
256.39 |
15.41 |
5.19 |
StrikeSwinging |
6.14 |
1.72 |
4.08 |
8.5 |
| Four-Seam |
89.36 |
1972.40 |
211.89 |
9.55 |
16.54 |
InPlay |
6.46 |
0.95 |
4.18 |
7.1 |
| Changeup |
79.43 |
1614.67 |
264.54 |
16.75 |
3.11 |
StrikeCalled |
6.18 |
1.56 |
3.93 |
8.8 |
| Curveball |
78.28 |
2578.41 |
45.78 |
-11.36 |
-9.47 |
StrikeCalled |
6.24 |
1.50 |
3.89 |
1.5 |
| Curveball |
79.90 |
2529.69 |
35.21 |
-7.13 |
-8.64 |
BallCalled |
6.28 |
1.51 |
4.05 |
1.2 |
| Sinker |
90.43 |
2069.82 |
230.34 |
16.05 |
14.58 |
FoulBallNotFieldable |
6.35 |
0.94 |
4.02 |
7.7 |
| Curveball |
77.91 |
2581.58 |
45.21 |
-9.77 |
-8.13 |
InPlay |
6.17 |
1.42 |
4.04 |
1.5 |
| Changeup |
82.06 |
1632.67 |
262.28 |
13.37 |
3.13 |
StrikeSwinging |
6.15 |
1.53 |
4.80 |
8.7 |
| Changeup |
81.23 |
1568.83 |
250.59 |
15.66 |
6.98 |
InPlay |
6.13 |
1.47 |
4.53 |
8.4 |
# Calculate the total number of pitches
total_pitches <- nrow(detailed_pitch_table)
# Create a summary table
pitch_summary <- detailed_pitch_table %>%
group_by(AutoPitchType) %>%
summarise(
TotalPitches = n(),
Usage = sprintf('%.2f%%', n() / total_pitches * 100),
Balls = sum(PitchCall == 'BallCalled'),
Strikes = sum(PitchCall != 'BallCalled'), # Count everything not a ball as a strike
BallPercentage = sprintf('%.2f%%', Balls / TotalPitches * 100),
StrikePercentage = sprintf('%.2f%%', Strikes / TotalPitches * 100),
AvgVelocity = round(mean(ReleaseSpeed, na.rm = TRUE), 2),
AvgSpinRate = round(mean(SpinRate, na.rm = TRUE), 2),
AvgInducedVertBreak = round(mean(InducedVerticalBreak, na.rm = TRUE), 2),
AvgHorzBreak = round(mean(HorizontalBreak, na.rm = TRUE), 2),
AvgTilt = round(mean(Tilt, na.rm = TRUE), 2),
AvgClockTilt = round(mean(ClockTilt, na.rm = TRUE), 1), # Clock face interpretation
AvgReleaseHeight = round(mean(ReleaseHeight, na.rm = TRUE), 2),
AvgReleaseSide = round(mean(ReleaseSide, na.rm = TRUE), 2),
AvgExtension = round(mean(Extension, na.rm = TRUE), 2)
) %>%
select(AutoPitchType, Usage, everything())
# Display the total number of pitches
cat('Total number of pitches thrown:', total_pitches)
## Total number of pitches thrown: 18
# Display the summary table
knitr::kable(pitch_summary, caption = 'Summary Pitch Table for Martinez')
Summary Pitch Table for Martinez
| Changeup |
44.44% |
8 |
2 |
6 |
25.00% |
75.00% |
81.07 |
1699.05 |
5.70 |
14.76 |
253.73 |
8.4 |
6.18 |
1.58 |
4.18 |
| Curveball |
33.33% |
6 |
3 |
3 |
50.00% |
50.00% |
77.67 |
2543.71 |
-7.82 |
-9.20 |
43.24 |
1.4 |
6.26 |
1.54 |
3.88 |
| Four-Seam |
5.56% |
1 |
0 |
1 |
0.00% |
100.00% |
89.36 |
1972.40 |
16.54 |
9.55 |
211.89 |
7.1 |
6.46 |
0.95 |
4.18 |
| Sinker |
16.67% |
3 |
1 |
2 |
33.33% |
66.67% |
89.94 |
1990.14 |
15.97 |
16.59 |
228.32 |
7.6 |
6.40 |
1.06 |
4.13 |
# Calculate maximum fastball velocity
max_fb_velocity <- detailed_pitch_table %>%
filter(AutoPitchType %in% c('Four-Seam', 'Two-Seam', 'Sinker', 'Cutter')) %>%
summarise(MaxFBVelocity = max(ReleaseSpeed, na.rm = TRUE)) %>%
pull(MaxFBVelocity)
# Display the maximum fastball velocity
cat('Martinez maximum FB velocity:', max_fb_velocity)
## Martinez maximum FB velocity: 90.43
# Prepare data for plotting pitch locations
pitch_location_data <- Martinez_data %>%
select(AutoPitchType, PlateLocHeight, PlateLocSide, PitchCall) %>%
rename(
PitchHeight = PlateLocHeight,
PitchSide = PlateLocSide
) %>%
mutate(
SwingTake = ifelse(PitchCall %in% c('StrikeSwinging', 'FoulBallNonSwinging', 'FoulBallFieldable', 'FoulBallNotFieldable', 'InPlay'), 'Swing', 'Take'),
Chase = ifelse(SwingTake == 'Swing' & (PitchSide < -0.75 | PitchSide > 0.75 | PitchHeight < 1.5 | PitchHeight > 3.5), 'Chase', 'Non-Chase')
)
# Create the scatter plot with specified strike zone boxes
ggplot(pitch_location_data, aes(x = PitchSide, y = PitchHeight, color = SwingTake, shape = Chase)) +
geom_point(size = 3) + # Increase point size
geom_rect(aes(xmin = -0.5, xmax = 0.5, ymin = 1.75, ymax = 3.25), fill = NA, color = 'red', linetype = 'solid', size = 1) + # Red box
geom_rect(aes(xmin = -0.75, xmax = 0.75, ymin = 1.5, ymax = 3.5), fill = NA, color = 'black', linetype = 'solid', size = 1) + # Black box
geom_rect(aes(xmin = -1.25, xmax = 1.25, ymin = 1.25, ymax = 3.75), fill = NA, color = 'gray', linetype = 'solid', size = 1) + # Gray box
scale_x_continuous(limits = c(-2, 2)) +
scale_y_continuous(limits = c(0, 5)) +
coord_fixed(ratio = 1) + # Adjust ratio to shrink vertical distance
labs(title = 'Pitch Locations for Martinez',
x = 'Horizontal Location (feet)',
y = 'Vertical Location (feet)',
color = 'Swing/Take',
shape = 'Chase') +
facet_wrap(~ AutoPitchType) + # Create individual graphs for each pitch type
theme_minimal() +
theme(
legend.position = 'right',
panel.grid.major = element_line(color = 'grey80'),
panel.grid.minor = element_line(color = 'grey90'),
axis.text = element_text(color = 'black'),
axis.title = element_text(color = 'black'),
plot.title = element_text(color = 'black'),
legend.background = element_rect(fill = 'white', color = NA),
legend.key = element_rect(fill = 'white', color = NA),
legend.text = element_text(color = 'black'),
legend.title = element_text(color = 'black')
)

# Create the scatter plot for horizontal and vertical breaks
ggplot(detailed_pitch_table, aes(x = HorizontalBreak, y = InducedVerticalBreak, color = AutoPitchType)) +
geom_point(size = 3) + # Increase point size
labs(title = 'Pitch Movement for Martinez',
x = 'Horizontal Break (inches)',
y = 'Induced Vertical Break (inches)',
color = 'Pitch Type') +
theme_minimal() +
theme(
legend.position = 'right',
panel.grid.major = element_line(color = 'grey80'),
panel.grid.minor = element_line(color = 'grey90'),
axis.text = element_text(color = 'black'),
axis.title = element_text(color = 'black'),
plot.title = element_text(color = 'black'),
legend.background = element_rect(fill = 'white', color = NA),
legend.key = element_rect(fill = 'white', color = NA),
legend.text = element_text(color = 'black'),
legend.title = element_text(color = 'black')
)
