# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <-c("NVDA", "MSFT", "TSLA", "AMS")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2023-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 528 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AMS 2013-01-31 -0.193
## 2 AMS 2013-02-28 -0.0690
## 3 AMS 2013-03-28 -0.0588
## 4 AMS 2013-04-30 -0.182
## 5 AMS 2013-05-31 0.217
## 6 AMS 2013-06-28 0.0661
## 7 AMS 2013-07-31 0.291
## 8 AMS 2013-08-30 -0.0137
## 9 AMS 2013-09-30 -0.121
## 10 AMS 2013-10-31 -0.0480
## # ℹ 518 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMS" "MSFT" "NVDA" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AMS 0.25
## 2 MSFT 0.25
## 3 NVDA 0.25
## 4 TSLA 0.25
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 132 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0160
## 2 2013-02-28 -0.0210
## 3 2013-03-28 0.0169
## 4 2013-04-30 0.0971
## 5 2013-05-31 0.231
## 6 2013-06-28 0.0298
## 7 2013-07-31 0.115
## 8 2013-08-30 0.0743
## 9 2013-09-30 0.0158
## 10 2013-10-31 -0.0500
## # ℹ 122 more rows
market_return_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_return_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.871
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
The scatter plot of my portfolio is showing returns against market returns and helps illustrate the beta coefficient I calculated at 0.871, indicating my selected portfolio might be less volatile than the market. Also The positive slope of the trend line in my plot confirms this beta value, that is demonstrating that my portfolio generally moves in the same direction as the market but with less intensity. The data points of my portfolio is closely aligned with the trend line, validate the beta, showing that my portfolio might experiences milder fluctuations compared to broader market movements. Overall, I would say that the plot and my beta calculation suggest that my portfolio maintains moderate sensitivity to market changes, but offering stability during periods of market volatility.