# PAQUETES
#
library(DT) # xie2020
library(foreign) # rcoreteam2020b
library(ggplot2) # wickham2016
library(reshape2) # wickham2007
library(scales) # wickham2020
- Objetivo
-
Calcular la tasa de formación de hogares a nivel nacional, estatal y, en
su caso, municipal, utilizando los datos contenidos en la ENIGH.
# cat.entidades <-
# read.table(
# file = 'cat_entidades.txt'
# , sep = '|'
# , fileEncoding = 'UTF-8'
# , header = TRUE
# , stringsAsFactors = FALSE
# )
# cat.municipios <-
# read.table(
# file = 'cat_municipios.txt'
# , sep = '|'
# , fileEncoding = 'UTF-8'
# , header = TRUE
# , stringsAsFactors = FALSE
# )
# LECTURA DATOS FUENTE: CARACTERÍSTICAS DE LOS HOGARES ----
#
# 2022 ----
#
datos.2022 <-
read.dbf(file = './enigh2022_ns_hogares_dbf/hogares.dbf', as.is = TRUE) |>
transform(AÑO = 2022)
# 2020 ---
#
datos.2020 <-
read.dbf(
file = './enigh2020_ns_concentradohogar_dbf/concentradohogar.dbf'
, as.is = TRUE
) |>
transform(AÑO = 2020)
# 2018 ---
#
datos.2018 <-
read.dbf(
file = './enigh2018_ns_concentradohogar_dbf/concentradohogar.dbf'
, as.is = TRUE
) |>
transform(AÑO = 2018)
# 2016 ---
#
datos.2016 <-
read.dbf(
file = './enigh2016_ns_concentradohogar_dbf/concentradohogar.dbf'
, as.is = TRUE
) |>
transform(AÑO = 2016)
NACIONAL
HOGARES POR AÑO
temp <-
rbind(
datos.2022[,c('AÑO', 'factor')],
datos.2020[,c('AÑO', 'factor')],
datos.2018[,c('AÑO', 'factor')],
datos.2016[,c('AÑO', 'factor')]
)
temp <-
aggregate(
x = list(HOGARES = temp$factor), by = list(AÑO = factor(temp$AÑO)), FUN = sum
)
temp$TASA <- NA
for (i in 2:nrow(temp)){
temp$TASA[i] <- temp$HOGARES[i]/temp$HOGARES[i-1] - 1
}
datatable(
data = temp |> transform(HOGARES = comma(HOGARES), TASA = percent(TASA))
, rownames = FALSE
)
ggplot(data = temp) +
aes(x = AÑO, y = HOGARES) +
geom_col() +
theme_classic() +
scale_y_continuous(labels = comma)

REFERENCIAS
R Core Team. 2020a.
Foreign: Read Data Stored by ’Minitab’, ’s’,
’SAS’, ’SPSS’, ’Stata’, ’Systat’, ’Weka’, ’dBase’, ... https://CRAN.R-project.org/package=foreign.
———. 2020b.
R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
Wickham, Hadley. 2007.
“Reshaping Data with the reshape Package.” Journal of
Statistical Software 21 (12): 1–20.
http://www.jstatsoft.org/v21/i12/.
———. 2016.
Ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York.
https://ggplot2.tidyverse.org.
Wickham, Hadley, and Dana Seidel. 2020.
Scales: Scale Functions for
Visualization.
https://CRAN.R-project.org/package=scales.
Xie, Yihui, Joe Cheng, and Xianying Tan. 2020.
DT: A Wrapper of the
JavaScript Library ’DataTables’.
https://CRAN.R-project.org/package=DT.