rm(list = ls())
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(rio)
data= import("dataOK.xlsx")
## New names:
## • `` -> `...1`
library(BBmisc)
## 
## Attaching package: 'BBmisc'
## The following objects are masked from 'package:dplyr':
## 
##     coalesce, collapse, symdiff
## The following object is masked from 'package:base':
## 
##     isFALSE
names(data)
##  [1] "...1"                    "key"                    
##  [3] "Código"                  "pared1_Ladrillo"        
##  [5] "pared2_Piedra"           "pared3_Adobe"           
##  [7] "pared4_Tapia"            "pared5_Quincha"         
##  [9] "pared6_Piedra"           "pared7_Madera"          
## [11] "pared8_Triplay"          "pared9_Otro"            
## [13] "pared10_Total"           "techo1_Concreto"        
## [15] "techo2_Madera"           "techo3_Tejas"           
## [17] "techo4_Planchas"         "techo5_Caña"            
## [19] "techo6_Triplay"          "techo7_Paja"            
## [21] "techo8_Otro"             "techo9_Total"           
## [23] "piso1_Parquet"           "piso2_Láminas"          
## [25] "piso3_Losetas"           "piso4_Madera"           
## [27] "piso5_Cemento"           "piso6_Tierra"           
## [29] "piso7_Otro"              "piso8_Total"            
## [31] "agua1_Red"               "agua2_Red_fueraVivienda"
## [33] "agua3_Pilón"             "agua4_Camión"           
## [35] "agua5_Pozo"              "agua6_Manantial"        
## [37] "agua7_Río"               "agua8_Otro"             
## [39] "agua9_Vecino"            "agua10_Total"           
## [41] "elec1_Sí"                "elec2_No"               
## [43] "elec3_Total"             "departamento"           
## [45] "provincia"               "Castillo"               
## [47] "Keiko"                   "ganaCastillo"           
## [49] "countPositivos"          "countFallecidos"
str(data)
## 'data.frame':    196 obs. of  50 variables:
##  $ ...1                   : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ key                    : chr  "AMAZONAS+BAGUA" "AMAZONAS+BONGARA" "AMAZONAS+CHACHAPOYAS" "AMAZONAS+CONDORCANQUI" ...
##  $ Código                 : num  102 103 101 104 105 106 107 202 203 204 ...
##  $ pared1_Ladrillo        : num  4633 1602 3782 291 430 ...
##  $ pared2_Piedra          : num  46 9 22 7 7 7 35 1 0 3 ...
##  $ pared3_Adobe           : num  6639 2729 5881 672 5217 ...
##  $ pared4_Tapia           : num  222 240 2476 8 6052 ...
##  $ pared5_Quincha         : num  2518 157 309 386 346 ...
##  $ pared6_Piedra          : num  127 36 168 7 54 28 518 65 7 6 ...
##  $ pared7_Madera          : num  4484 2505 1270 8145 606 ...
##  $ pared8_Triplay         : num  851 30 91 200 45 24 210 18 0 1 ...
##  $ pared9_Otro            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ pared10_Total          : num  19520 7308 13999 9716 12757 ...
##  $ techo1_Concreto        : num  2187 692 2262 56 187 ...
##  $ techo2_Madera          : num  294 75 160 188 43 48 340 57 12 8 ...
##  $ techo3_Tejas           : num  179 382 3393 177 3071 ...
##  $ techo4_Planchas        : num  13186 6084 8005 2036 9343 ...
##  $ techo5_Caña            : num  160 38 50 15 26 15 196 10 8 5 ...
##  $ techo6_Triplay         : num  106 5 14 10 12 5 62 17 4 3 ...
##  $ techo7_Paja            : num  3408 32 115 7234 75 ...
##  $ techo8_Otro            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ techo9_Total           : num  19520 7308 13999 9716 12757 ...
##  $ piso1_Parquet          : num  6 5 23 2 4 3 20 0 0 5 ...
##  $ piso2_Láminas          : num  19 2 36 0 0 4 32 0 0 1 ...
##  $ piso3_Losetas          : num  647 165 1077 20 46 ...
##  $ piso4_Madera           : num  157 132 240 1523 295 ...
##  $ piso5_Cemento          : num  7121 2917 6189 943 1911 ...
##  $ piso6_Tierra           : num  11569 4087 6434 7228 10501 ...
##  $ piso7_Otro             : num  1 0 0 0 0 0 0 0 0 0 ...
##  $ piso8_Total            : num  19520 7308 13999 9716 12757 ...
##  $ agua1_Red              : num  9429 4569 10647 1307 7172 ...
##  $ agua2_Red_fueraVivienda: num  4392 1497 1619 867 3097 ...
##  $ agua3_Pilón            : num  793 215 184 1003 1112 ...
##  $ agua4_Camión           : num  59 0 49 2 0 0 117 0 0 0 ...
##  $ agua5_Pozo             : num  1792 474 876 2564 819 ...
##  $ agua6_Manantial        : num  270 67 92 431 132 211 471 121 61 27 ...
##  $ agua7_Río              : num  2648 388 488 3428 369 ...
##  $ agua8_Otro             : num  56 61 24 80 9 29 104 2 1 6 ...
##  $ agua9_Vecino           : num  81 37 20 34 47 8 177 9 4 6 ...
##  $ agua10_Total           : num  19520 7308 13999 9716 12757 ...
##  $ elec1_Sí               : num  13204 6025 12248 1792 10886 ...
##  $ elec2_No               : num  6316 1283 1751 7924 1871 ...
##  $ elec3_Total            : num  19520 7308 13999 9716 12757 ...
##  $ departamento           : chr  "AMAZONAS" "AMAZONAS" "AMAZONAS" "AMAZONAS" ...
##  $ provincia              : chr  "BAGUA" "BONGARA" "CHACHAPOYAS" "CONDORCANQUI" ...
##  $ Castillo               : num  25629 8374 15671 13154 12606 ...
##  $ Keiko                  : num  10770 5209 10473 1446 7840 ...
##  $ ganaCastillo           : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ countPositivos         : num  8126 389 2174 3481 456 ...
##  $ countFallecidos        : num  462 72 281 111 88 60 336 26 31 21 ...
cor(data[,c(4:11, 14:20, 23:28, 31:37,39 )])
##                         pared1_Ladrillo pared2_Piedra pared3_Adobe pared4_Tapia
## pared1_Ladrillo              1.00000000  0.6531304075  0.353719710 -0.028441269
## pared2_Piedra                0.65313041  1.0000000000  0.202919582 -0.049282201
## pared3_Adobe                 0.35371971  0.2029195823  1.000000000 -0.004149731
## pared4_Tapia                -0.02844127 -0.0492822015 -0.004149731  1.000000000
## pared5_Quincha               0.22318873  0.1380474858  0.148902281 -0.108766809
## pared6_Piedra                0.06663338  0.1032200591  0.178622319  0.055097671
## pared7_Madera                0.88895732  0.5023937898  0.157709831 -0.086020384
## pared8_Triplay               0.84967877  0.5041851637  0.274356092 -0.093543394
## techo1_Concreto              0.99895777  0.6475530197  0.354369780 -0.022979167
## techo2_Madera                0.96134482  0.5544758307  0.255641939 -0.042858436
## techo3_Tejas                 0.13065272  0.0424043920  0.452572804  0.406675472
## techo4_Planchas              0.92241165  0.6181716798  0.457713911 -0.020523849
## techo5_Caña                  0.43978726  0.2414297477  0.379420639 -0.130629381
## techo6_Triplay               0.83773155  0.4864905433  0.293214074 -0.095166861
## techo7_Paja                  0.04330660  0.0223855427  0.083448461 -0.119761652
## piso1_Parquet                0.98932418  0.5942830300  0.306203092 -0.024715356
## piso2_Láminas                0.99183728  0.6943500824  0.298837801 -0.032107090
## piso3_Losetas                0.99778010  0.6175524308  0.361288369 -0.027440616
## piso4_Madera                 0.57442769  0.3229830485  0.117851587 -0.022105601
## piso5_Cemento                0.99711647  0.6705103532  0.381281093 -0.029507485
## piso6_Tierra                 0.69091898  0.4488614500  0.716499338  0.142515418
## agua1_Red                    0.99829658  0.6423855521  0.392068843 -0.015368882
## agua2_Red_fueraVivienda      0.98520928  0.5877128787  0.396090900  0.014701847
## agua3_Pilón                  0.91424116  0.8433274954  0.378993545 -0.022967354
## agua4_Camión                 0.98857983  0.6134251834  0.328883084 -0.055134724
## agua5_Pozo                   0.37406346  0.2506213775  0.445056601  0.021149053
## agua6_Manantial             -0.05230168 -0.0346340044  0.265363626  0.235734210
## agua7_Río                    0.01052770  0.0001916141  0.059652469 -0.058424224
## agua9_Vecino                 0.93746903  0.5515121854  0.411211941 -0.029156352
##                         pared5_Quincha pared6_Piedra pared7_Madera
## pared1_Ladrillo             0.22318873   0.066633377   0.888957322
## pared2_Piedra               0.13804749   0.103220059   0.502393790
## pared3_Adobe                0.14890228   0.178622319   0.157709831
## pared4_Tapia               -0.10876681   0.055097671  -0.086020384
## pared5_Quincha              1.00000000  -0.026273029   0.170311934
## pared6_Piedra              -0.02627303   1.000000000   0.035535282
## pared7_Madera               0.17031193   0.035535282   1.000000000
## pared8_Triplay              0.44570008   0.039816573   0.744713107
## techo1_Concreto             0.19527128   0.069792583   0.883161427
## techo2_Madera               0.17862751   0.053037313   0.941476827
## techo3_Tejas               -0.05309366  -0.001301362   0.032824915
## techo4_Planchas             0.42894200   0.119895509   0.869075213
## techo5_Caña                 0.15514103  -0.046225996   0.312733003
## techo6_Triplay              0.25087205   0.026429158   0.725503574
## techo7_Paja                -0.06002296   0.261592675   0.242050977
## piso1_Parquet               0.16624455   0.070321007   0.891160659
## piso2_Láminas               0.17602057   0.071823074   0.882083317
## piso3_Losetas               0.21954880   0.062592052   0.891094201
## piso4_Madera                0.03746477   0.019869483   0.762214370
## piso5_Cemento               0.23548831   0.065790066   0.890530043
## piso6_Tierra                0.49536175   0.226419900   0.578371145
## agua1_Red                   0.23668107   0.067800217   0.886993167
## agua2_Red_fueraVivienda     0.21298304   0.099070259   0.896724456
## agua3_Pilón                 0.28442189   0.105897661   0.786723617
## agua4_Camión                0.26851383   0.063823367   0.877312286
## agua5_Pozo                  0.06622468   0.235064440   0.450563996
## agua6_Manantial            -0.03649775   0.386226692   0.002887509
## agua7_Río                   0.47127241   0.097287175   0.192537686
## agua9_Vecino                0.45416242   0.061389980   0.859526544
##                         pared8_Triplay techo1_Concreto techo2_Madera
## pared1_Ladrillo             0.84967877      0.99895777   0.961344818
## pared2_Piedra               0.50418516      0.64755302   0.554475831
## pared3_Adobe                0.27435609      0.35436978   0.255641939
## pared4_Tapia               -0.09354339     -0.02297917  -0.042858436
## pared5_Quincha              0.44570008      0.19527128   0.178627506
## pared6_Piedra               0.03981657      0.06979258   0.053037313
## pared7_Madera               0.74471311      0.88316143   0.941476827
## pared8_Triplay              1.00000000      0.83590363   0.794328071
## techo1_Concreto             0.83590363      1.00000000   0.961581686
## techo2_Madera               0.79432807      0.96158169   1.000000000
## techo3_Tejas                0.03780376      0.13279160   0.101237912
## techo4_Planchas             0.84848052      0.90871357   0.878105184
## techo5_Caña                 0.50990128      0.43728397   0.390803808
## techo6_Triplay              0.93355385      0.83270784   0.802264531
## techo7_Paja                 0.01251506      0.03913805   0.077059348
## piso1_Parquet               0.81322920      0.99207493   0.964158881
## piso2_Láminas               0.81358173      0.99296224   0.956534403
## piso3_Losetas               0.84624538      0.99775192   0.966516260
## piso4_Madera                0.47329269      0.55886513   0.613180887
## piso5_Cemento               0.85093335      0.99480170   0.958653705
## piso6_Tierra                0.72230336      0.67690594   0.607794833
## agua1_Red                   0.85195472      0.99671838   0.959502210
## agua2_Red_fueraVivienda     0.82195202      0.98578532   0.962206573
## agua3_Pilón                 0.79397034      0.90688087   0.858428968
## agua4_Camión                0.89011698      0.98648237   0.949513734
## agua5_Pozo                  0.28971580      0.36629882   0.356536589
## agua6_Manantial            -0.08325702     -0.05033923  -0.051148104
## agua7_Río                   0.22006947     -0.01649647  -0.000496056
## agua9_Vecino                0.88257997      0.92777533   0.896083631
##                         techo3_Tejas techo4_Planchas techo5_Caña techo6_Triplay
## pared1_Ladrillo          0.130652715      0.92241165  0.43978726     0.83773155
## pared2_Piedra            0.042404392      0.61817168  0.24142975     0.48649054
## pared3_Adobe             0.452572804      0.45771391  0.37942064     0.29321407
## pared4_Tapia             0.406675472     -0.02052385 -0.13062938    -0.09516686
## pared5_Quincha          -0.053093661      0.42894200  0.15514103     0.25087205
## pared6_Piedra           -0.001301362      0.11989551 -0.04622600     0.02642916
## pared7_Madera            0.032824915      0.86907521  0.31273300     0.72550357
## pared8_Triplay           0.037803764      0.84848052  0.50990128     0.93355385
## techo1_Concreto          0.132791602      0.90871357  0.43728397     0.83270784
## techo2_Madera            0.101237912      0.87810518  0.39080381     0.80226453
## techo3_Tejas             1.000000000      0.09472707 -0.05434360     0.03229131
## techo4_Planchas          0.094727069      1.00000000  0.36667138     0.75919949
## techo5_Caña             -0.054343597      0.36667138  1.00000000     0.65797536
## techo6_Triplay           0.032291306      0.75919949  0.65797536     1.00000000
## techo7_Paja             -0.127532085      0.13498599 -0.10843201    -0.01979360
## piso1_Parquet            0.133642693      0.88536545  0.37954398     0.80425936
## piso2_Láminas            0.121516097      0.89437518  0.37680835     0.80040365
## piso3_Losetas            0.137798305      0.91661265  0.44402234     0.83725324
## piso4_Madera             0.160424162      0.63394934  0.14239733     0.43011029
## piso5_Cemento            0.134501379      0.93238504  0.47116404     0.84592008
## piso6_Tierra             0.316997243      0.84457447  0.35974747     0.62026735
## agua1_Red                0.158712998      0.93123070  0.45513900     0.84040829
## agua2_Red_fueraVivienda  0.194065573      0.91918607  0.40465632     0.80897283
## agua3_Pilón              0.110096827      0.89903722  0.38290612     0.75742867
## agua4_Camión             0.097045593      0.91376978  0.45951274     0.87754627
## agua5_Pozo               0.043586108      0.51371228  0.14862510     0.26004518
## agua6_Manantial          0.187194399      0.05604603 -0.12964685    -0.09880946
## agua7_Río               -0.095874511      0.27005171 -0.03088737     0.03804366
## agua9_Vecino             0.126065743      0.95684216  0.44988953     0.80608463
##                         techo7_Paja piso1_Parquet piso2_Láminas piso3_Losetas
## pared1_Ladrillo          0.04330660    0.98932418    0.99183728    0.99778010
## pared2_Piedra            0.02238554    0.59428303    0.69435008    0.61755243
## pared3_Adobe             0.08344846    0.30620309    0.29883780    0.36128837
## pared4_Tapia            -0.11976165   -0.02471536   -0.03210709   -0.02744062
## pared5_Quincha          -0.06002296    0.16624455    0.17602057    0.21954880
## pared6_Piedra            0.26159268    0.07032101    0.07182307    0.06259205
## pared7_Madera            0.24205098    0.89116066    0.88208332    0.89109420
## pared8_Triplay           0.01251506    0.81322920    0.81358173    0.84624538
## techo1_Concreto          0.03913805    0.99207493    0.99296224    0.99775192
## techo2_Madera            0.07705935    0.96415888    0.95653440    0.96651626
## techo3_Tejas            -0.12753208    0.13364269    0.12151610    0.13779831
## techo4_Planchas          0.13498599    0.88536545    0.89437518    0.91661265
## techo5_Caña             -0.10843201    0.37954398    0.37680835    0.44402234
## techo6_Triplay          -0.01979360    0.80425936    0.80040365    0.83725324
## techo7_Paja              1.00000000    0.05309059    0.04633085    0.03941692
## piso1_Parquet            0.05309059    1.00000000    0.99065357    0.99103260
## piso2_Láminas            0.04633085    0.99065357    1.00000000    0.98752333
## piso3_Losetas            0.03941692    0.99103260    0.98752333    1.00000000
## piso4_Madera             0.34381863    0.56951134    0.56203796    0.57292657
## piso5_Cemento            0.04326973    0.97772920    0.98449487    0.99354882
## piso6_Tierra             0.19756408    0.63421141    0.63900132    0.68434083
## agua1_Red                0.04067676    0.98411589    0.98526683    0.99757039
## agua2_Red_fueraVivienda  0.06474771    0.98589969    0.97699716    0.98734773
## agua3_Pilón              0.07705249    0.86828274    0.91865407    0.89712584
## agua4_Camión             0.03345529    0.98116063    0.97711545    0.98828751
## agua5_Pozo               0.50703976    0.34557827    0.34685544    0.35335673
## agua6_Manantial          0.32756695   -0.04463570   -0.05062350   -0.05659592
## agua7_Río                0.43462456   -0.03279737   -0.02608500    0.00614929
## agua9_Vecino             0.06495528    0.91217924    0.90579537    0.93886366
##                         piso4_Madera piso5_Cemento piso6_Tierra   agua1_Red
## pared1_Ladrillo           0.57442769    0.99711647    0.6909190  0.99829658
## pared2_Piedra             0.32298305    0.67051035    0.4488614  0.64238555
## pared3_Adobe              0.11785159    0.38128109    0.7164993  0.39206884
## pared4_Tapia             -0.02210560   -0.02950749    0.1425154 -0.01536888
## pared5_Quincha            0.03746477    0.23548831    0.4953617  0.23668107
## pared6_Piedra             0.01986948    0.06579007    0.2264199  0.06780022
## pared7_Madera             0.76221437    0.89053004    0.5783711  0.88699317
## pared8_Triplay            0.47329269    0.85093335    0.7223034  0.85195472
## techo1_Concreto           0.55886513    0.99480170    0.6769059  0.99671838
## techo2_Madera             0.61318089    0.95865370    0.6077948  0.95950221
## techo3_Tejas              0.16042416    0.13450138    0.3169972  0.15871300
## techo4_Planchas           0.63394934    0.93238504    0.8445745  0.93123070
## techo5_Caña               0.14239733    0.47116404    0.3597475  0.45513900
## techo6_Triplay            0.43011029    0.84592008    0.6202674  0.84040829
## techo7_Paja               0.34381863    0.04326973    0.1975641  0.04067676
## piso1_Parquet             0.56951134    0.97772920    0.6342114  0.98411589
## piso2_Láminas             0.56203796    0.98449487    0.6390013  0.98526683
## piso3_Losetas             0.57292657    0.99354882    0.6843408  0.99757039
## piso4_Madera              1.00000000    0.58193718    0.3777415  0.57916009
## piso5_Cemento             0.58193718    1.00000000    0.7088272  0.99789026
## piso6_Tierra              0.37774147    0.70882717    1.0000000  0.71563959
## agua1_Red                 0.57916009    0.99789026    0.7156396  1.00000000
## agua2_Red_fueraVivienda   0.58582633    0.98027897    0.7198307  0.98638141
## agua3_Pilón               0.51010998    0.92487525    0.7279764  0.91246278
## agua4_Camión              0.55739897    0.98364180    0.6854607  0.98626095
## agua5_Pozo                0.42802544    0.39573418    0.5945324  0.37823473
## agua6_Manantial          -0.01461525   -0.04956959    0.3041149 -0.04576082
## agua7_Río                 0.35384303    0.02218880    0.3719876  0.02110242
## agua9_Vecino              0.59348853    0.94155307    0.7883890  0.94569160
##                         agua2_Red_fueraVivienda  agua3_Pilón agua4_Camión
## pared1_Ladrillo                      0.98520928  0.914241155   0.98857983
## pared2_Piedra                        0.58771288  0.843327495   0.61342518
## pared3_Adobe                         0.39609090  0.378993545   0.32888308
## pared4_Tapia                         0.01470185 -0.022967354  -0.05513472
## pared5_Quincha                       0.21298304  0.284421889   0.26851383
## pared6_Piedra                        0.09907026  0.105897661   0.06382337
## pared7_Madera                        0.89672446  0.786723617   0.87731229
## pared8_Triplay                       0.82195202  0.793970340   0.89011698
## techo1_Concreto                      0.98578532  0.906880868   0.98648237
## techo2_Madera                        0.96220657  0.858428968   0.94951373
## techo3_Tejas                         0.19406557  0.110096827   0.09704559
## techo4_Planchas                      0.91918607  0.899037215   0.91376978
## techo5_Caña                          0.40465632  0.382906118   0.45951274
## techo6_Triplay                       0.80897283  0.757428670   0.87754627
## techo7_Paja                          0.06474771  0.077052486   0.03345529
## piso1_Parquet                        0.98589969  0.868282741   0.98116063
## piso2_Láminas                        0.97699716  0.918654066   0.97711545
## piso3_Losetas                        0.98734773  0.897125837   0.98828751
## piso4_Madera                         0.58582633  0.510109980   0.55739897
## piso5_Cemento                        0.98027897  0.924875253   0.98364180
## piso6_Tierra                         0.71983065  0.727976372   0.68546068
## agua1_Red                            0.98638141  0.912462784   0.98626095
## agua2_Red_fueraVivienda              1.00000000  0.879761248   0.97365926
## agua3_Pilón                          0.87976125  1.000000000   0.88899419
## agua4_Camión                         0.97365926  0.888994189   1.00000000
## agua5_Pozo                           0.39026333  0.401347128   0.33670399
## agua6_Manantial                      0.02845610  0.009365479  -0.07159749
## agua7_Río                            0.01369634  0.096817588   0.02735650
## agua9_Vecino                         0.93305331  0.855812361   0.94449827
##                         agua5_Pozo agua6_Manantial     agua7_Río agua9_Vecino
## pared1_Ladrillo         0.37406346    -0.052301676  0.0105277014   0.93746903
## pared2_Piedra           0.25062138    -0.034634004  0.0001916141   0.55151219
## pared3_Adobe            0.44505660     0.265363626  0.0596524695   0.41121194
## pared4_Tapia            0.02114905     0.235734210 -0.0584242237  -0.02915635
## pared5_Quincha          0.06622468    -0.036497754  0.4712724110   0.45416242
## pared6_Piedra           0.23506444     0.386226692  0.0972871753   0.06138998
## pared7_Madera           0.45056400     0.002887509  0.1925376861   0.85952654
## pared8_Triplay          0.28971580    -0.083257024  0.2200694706   0.88257997
## techo1_Concreto         0.36629882    -0.050339225 -0.0164964678   0.92777533
## techo2_Madera           0.35653659    -0.051148104 -0.0004960560   0.89608363
## techo3_Tejas            0.04358611     0.187194399 -0.0958745114   0.12606574
## techo4_Planchas         0.51371228     0.056046030  0.2700517058   0.95684216
## techo5_Caña             0.14862510    -0.129646855 -0.0308873665   0.44988953
## techo6_Triplay          0.26004518    -0.098809458  0.0380436569   0.80608463
## techo7_Paja             0.50703976     0.327566948  0.4346245642   0.06495528
## piso1_Parquet           0.34557827    -0.044635695 -0.0327973692   0.91217924
## piso2_Láminas           0.34685544    -0.050623497 -0.0260850003   0.90579537
## piso3_Losetas           0.35335673    -0.056595918  0.0061492902   0.93886366
## piso4_Madera            0.42802544    -0.014615250  0.3538430310   0.59348853
## piso5_Cemento           0.39573418    -0.049569592  0.0221887989   0.94155307
## piso6_Tierra            0.59453238     0.304114863  0.3719876192   0.78838904
## agua1_Red               0.37823473    -0.045760824  0.0211024200   0.94569160
## agua2_Red_fueraVivienda 0.39026333     0.028456097  0.0136963424   0.93305331
## agua3_Pilón             0.40134713     0.009365479  0.0968175876   0.85581236
## agua4_Camión            0.33670399    -0.071597493  0.0273564998   0.94449827
## agua5_Pozo              1.00000000     0.291063373  0.2658177285   0.41928935
## agua6_Manantial         0.29106337     1.000000000  0.3114887990  -0.06376963
## agua7_Río               0.26581773     0.311488799  1.0000000000   0.16068237
## agua9_Vecino            0.41928935    -0.063769632  0.1606823680   1.00000000
dat <- data.frame(
  x1 = c(2, 4, 3, 1),
  x2 = c(4, 5, 3, 2),
  x3 = c(3, 2, 4, 4),
  y = c(7, 9, 8, 5)
)

# Calcular las correlaciones entre cada columna y la variable y
correlations <- sapply(dat[, -ncol(dat)], function(col) cor(col, dat$y))

# Identificar las columnas con correlación negativa
neg_cor_cols <- names(correlations[correlations < 0])

# Invertir el rango de las columnas con correlación negativa
for (col in neg_cor_cols) {
  max_value <- max(dat[[col]])
  min_value <- min(dat[[col]])
  dat[[col]] <- (max_value + min_value) - dat[[col]]
}

# Mostrar el dataframe con las columnas transformadas
print(dat)
##   x1 x2 x3 y
## 1  2  4  3 7
## 2  4  5  4 9
## 3  3  3  2 8
## 4  1  2  2 5
dataClus=data[,c(4:11, 14:20, 23:28, 31:37,39)]
row.names(dataClus)=data$key
library(cluster)
g.dist = daisy(dataClus, metric="gower")
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
fviz_nbclust(dataClus, pam,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F)

library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
set.seed(123)
res.pam=pam(g.dist,3,cluster.only = F)


dataClus$pam=res.pam$cluster

head(dataClus,15)%>%kbl()%>%kable_styling()
pared1_Ladrillo pared2_Piedra pared3_Adobe pared4_Tapia pared5_Quincha pared6_Piedra pared7_Madera pared8_Triplay techo1_Concreto techo2_Madera techo3_Tejas techo4_Planchas techo5_Caña techo6_Triplay techo7_Paja piso1_Parquet piso2_Láminas piso3_Losetas piso4_Madera piso5_Cemento piso6_Tierra agua1_Red agua2_Red_fueraVivienda agua3_Pilón agua4_Camión agua5_Pozo agua6_Manantial agua7_Río agua9_Vecino pam
AMAZONAS+BAGUA 4633 46 6639 222 2518 127 4484 851 2187 294 179 13186 160 106 3408 6 19 647 157 7121 11569 9429 4392 793 59 1792 270 2648 81 1
AMAZONAS+BONGARA 1602 9 2729 240 157 36 2505 30 692 75 382 6084 38 5 32 5 2 165 132 2917 4087 4569 1497 215 0 474 67 388 37 1
AMAZONAS+CHACHAPOYAS 3782 22 5881 2476 309 168 1270 91 2262 160 3393 8005 50 14 115 23 36 1077 240 6189 6434 10647 1619 184 49 876 92 488 20 1
AMAZONAS+CONDORCANQUI 291 7 672 8 386 7 8145 200 56 188 177 2036 15 10 7234 2 0 20 1523 943 7228 1307 867 1003 2 2564 431 3428 34 1
AMAZONAS+LUYA 430 7 5217 6052 346 54 606 45 187 43 3071 9343 26 12 75 4 0 46 295 1911 10501 7172 3097 1112 0 819 132 369 47 1
AMAZONAS+RODRIGUEZ DE MENDOZA 1546 7 2778 155 720 28 3646 24 480 48 2810 5495 15 5 51 3 4 264 176 2974 5483 5256 1278 154 0 1020 211 948 8 1
AMAZONAS+UTCUBAMBA 4727 35 17199 2964 1836 518 2714 210 2595 340 308 26620 196 62 82 20 32 940 328 10631 18252 14712 8760 1308 117 2502 471 2052 177 2
ANCASH+AIJA 15 1 1763 70 7 65 2 18 9 57 403 1297 10 17 148 0 0 4 24 195 1718 1451 42 10 0 230 121 76 9 1
ANCASH+ANTONIO RAIMONDI 97 0 658 3014 7 7 3 0 29 12 1146 2341 8 4 246 0 0 16 17 314 3439 3229 222 40 0 190 61 39 4 1
ANCASH+ASUNCION 215 3 368 1701 4 6 4 1 76 8 1893 314 5 3 3 5 1 41 12 409 1834 1642 444 4 0 124 27 49 6 1
ANCASH+BOLOGNESI 506 12 3703 2332 27 183 14 41 261 46 1365 4554 40 35 517 6 8 91 86 1854 4773 4930 479 113 0 579 242 456 8 1
ANCASH+CARHUAZ 1913 3 10846 140 9 15 48 29 1543 118 5794 5376 68 60 44 14 8 394 20 3212 9355 9502 1735 190 4 865 296 283 102 1
ANCASH+CARLOS FERMIN FITZCARRALD 107 0 1326 3728 0 20 4 3 62 14 3559 1254 6 14 279 1 1 15 11 609 4551 3437 1014 85 0 274 76 216 58 1
ANCASH+CASMA 5614 29 4418 11 1097 15 312 3065 2884 78 153 3549 4806 3059 32 49 19 998 19 6173 7303 8800 639 1608 1538 1421 150 275 101 1
ANCASH+CORONGO 43 1 1963 11 0 5 1 1 19 4 610 1353 16 1 22 0 0 4 4 417 1600 1522 90 10 0 194 100 100 6 1
fviz_silhouette(res.pam,print.summary = F)

silPAM=data.frame(res.pam$silinfo$widths)
silPAM$country=row.names(silPAM)
poorPAM=silPAM[silPAM$sil_width<0,'country']%>%sort()
poorPAM
##  [1] "AMAZONAS+UTCUBAMBA"          "APURIMAC+ANDAHUAYLAS"       
##  [3] "AREQUIPA+AREQUIPA"           "AYACUCHO+HUAMANGA"          
##  [5] "CAJAMARCA+CUTERVO"           "CAJAMARCA+JAEN"             
##  [7] "CAJAMARCA+SAN IGNACIO"       "CUSCO+CHUMBIVILCAS"         
##  [9] "CUSCO+LA CONVENCION"         "HUANUCO+LEONCIO PRADO"      
## [11] "JUNIN+CHANCHAMAYO"           "JUNIN+HUANCAYO"             
## [13] "LA LIBERTAD+OTUZCO"          "LA LIBERTAD+SANCHEZ CARRION"
## [15] "LA LIBERTAD+TRUJILLO"        "LAMBAYEQUE+CHICLAYO"        
## [17] "LAMBAYEQUE+LAMBAYEQUE"       "PIURA+HUANCABAMBA"          
## [19] "PIURA+MORROPON"              "PIURA+SULLANA"              
## [21] "PUNO+CARABAYA"               "PUNO+MELGAR"                
## [23] "PUNO+SANDIA"
aggregate(.~ pam, data=dataClus,mean)
##   pam pared1_Ladrillo pared2_Piedra pared3_Adobe pared4_Tapia pared5_Quincha
## 1   1        8382.847       60.6319     5932.583     1669.681       514.2883
## 2   2       33794.875      699.4375    24159.625     2623.281      2300.6250
## 3   3     1850434.000    10905.0000    51710.000      562.000      7089.0000
##   pared6_Piedra pared7_Madera pared8_Triplay techo1_Concreto techo2_Madera
## 1      241.2454      2642.534       829.9877        5320.736      433.1718
## 2     1157.0625      3105.781      1504.0625       25444.125      413.8750
## 3     1244.0000    197660.000     55594.0000     1616788.000    70951.0000
##   techo3_Tejas techo4_Planchas techo5_Caña techo6_Triplay techo7_Paja
## 1     2484.080        9376.215    1178.387       562.2025    918.9939
## 2     5720.156       33452.969    1477.031       564.7500   2271.8438
## 3    12324.000      417514.000   21627.000     33153.0000   2841.0000
##   piso1_Parquet piso2_Láminas piso3_Losetas piso4_Madera piso5_Cemento
## 1      285.0429      150.6135      2049.442    1081.9387      8245.405
## 2     1461.9375      878.8125      9149.000     861.3438     27643.344
## 3   298751.0000    91740.0000    609326.000   26720.0000   1017917.000
##   piso6_Tierra  agua1_Red agua2_Red_fueraVivienda agua3_Pilón agua4_Camión
## 1     8460.184   12726.58                2357.466    978.2147     707.1534
## 2    29348.406   43677.25                7827.812   4155.5312    1979.4688
## 3   130607.000 1690717.00              232583.000  69695.0000  146223.0000
##   agua5_Pozo agua6_Manantial agua7_Río agua9_Vecino
## 1   2012.000         306.865  965.5767     130.7485
## 2   6603.219        1486.688 2865.1562     454.2188
## 3  23016.000         119.000  497.0000   10325.0000
sum(data$elec1_Sí+data$elec2_No)
## [1] 7698900
data$porcentaje_electrico <- (data$elec1_Sí / data$elec3_Total) * 100
data$porcentaje_electrico
##   [1] 67.64344 82.44390 87.49196 18.44380 85.33354 77.43711 80.77012 78.72231
##   [9] 81.59007 88.27107 78.83544 79.58164 65.49730 79.91896 89.67901 89.66251
##  [17] 80.77924 83.94366 83.96259 69.49873 68.73284 81.37393 67.26671 79.66168
##  [25] 90.85280 77.81418 79.90615 90.65506 79.09005 68.89952 82.35773 74.78474
##  [33] 68.98904 79.15537 92.14882 89.42797 87.44072 87.78482 75.37346 68.46439
##  [41] 89.11167 78.47713 69.70906 86.75668 72.89945 82.48046 70.30474 75.87302
##  [49] 85.12609 86.71171 80.20305 78.36938 76.34198 75.20600 86.41630 73.92059
##  [57] 87.76943 70.84335 73.89553 88.56824 80.13472 74.45562 79.01125 76.35064
##  [65] 72.00375 79.82246 98.28078 77.68284 81.55471 77.21895 62.30630 82.81170
##  [73] 61.46247 96.82175 61.32671 78.05704 72.86551 69.49437 78.82183 85.44950
##  [81] 79.90021 68.19581 64.00158 76.51069 83.86897 57.29150 81.65788 72.21796
##  [89] 64.66758 76.61017 63.93431 83.39664 49.09457 76.46809 54.97109 57.55683
##  [97] 44.92040 53.83292 91.77197 91.04013 85.98952 83.76151 91.11282 83.62439
## [105] 83.34268 83.69814 93.11447 88.91416 81.60531 62.64424 91.01681 89.38624
## [113] 93.30889 68.77758 92.40647 84.45416 70.61077 84.66941 92.50522 70.76312
## [121] 71.80679 74.96151 94.79664 85.99579 95.65150 78.66870 85.32023 94.21655
## [129] 86.28995 83.81993 85.87467 91.88937 81.44267 89.85333 96.01232 93.40278
## [137] 85.64202 71.58794 42.18052 64.79486 60.72980 84.97648 43.87515 70.34500
## [145] 57.69488 67.11580 82.53862 86.95933 57.33355 91.25132 87.84567 68.34371
## [153] 67.96468 86.60623 69.76561 72.96044 85.39516 88.44072 87.65905 83.22978
## [161] 90.29782 91.19633 72.55965 54.03354 64.40475 71.58178 77.70734 60.35847
## [169] 69.32592 77.64073 77.38100 69.98782 90.66874 52.33462 81.38544 78.07711
## [177] 77.85411 72.60504 83.06654 86.29106 88.35394 84.54968 85.93354 94.46922
## [185] 83.29834 76.00497 86.52529 87.38263 70.82240 86.85755 91.21925 87.19316
## [193] 39.95383 82.73194 75.82967 41.58126
data$razon <- data$Castillo / data$Keiko
data$razon
##   [1]  2.3796657  1.6076022  1.4963239  9.0968188  1.6079082  1.4509197
##   [7]  1.9009468  1.6454352  6.4162437  3.4582830  1.9253881  2.1863795
##  [13]  3.8078963  0.7286762  1.4890411  1.7662760  4.0625186  0.8258561
##  [19]  0.9427761  5.1492629  0.9496819  2.7055192  3.5156312  2.7439239
##  [25]  0.9555440  2.7920907  2.1199570  2.8806288  4.8221388  5.2714286
##  [31]  3.9835244  5.0256475 10.2177460  6.5783051  1.6989192  1.4526308
##  [37]  0.8927284  3.1326781  6.2017463  4.5558122  2.4786000  6.1130334
##  [43]  8.1649315  4.6426609  7.5339286  4.8862275  5.7577158  2.6740517
##  [49]  4.5105422  2.7023915  3.2901057  9.0247678  5.7456202  1.2575664
##  [55]  1.4373245  4.1808609  5.9647541  1.5534476  2.7172741  9.3437360
##  [61]  2.3314535  3.7248398  2.7899160  2.4580153  3.7720787  2.5463673
##  [67]  0.4831402 13.2825630  7.4869399  7.0571013 21.7387670 11.0736035
##  [73] 26.3169839  2.5130113 11.8407979  5.4780481 11.5419968 12.3055848
##  [79]  8.7167819  6.3994521  6.7660632  7.8382873  2.0911546  5.3319149
##  [85]  7.3321089  2.0721805  5.3368150  2.0932762  4.1854839  4.9527972
##  [91]  4.7615455  1.7712630  5.9676985  1.1909417  2.2522972  4.4833625
##  [97]  1.6050449  9.6971831  0.8791366  0.8873290  0.9636714  1.0059647
## [103]  0.9594576  1.1465777  2.1354781  1.3151706  1.5129584  1.0626024
## [109]  2.1368307  1.2525173  1.0602023  2.0724083  0.6664874  1.5886333
## [115]  0.7705212  0.4659518  1.2723109  1.1065936  0.7461763  1.3769642
## [121]  1.0372968  1.2861614  0.5066154  1.2849815  0.6755326  1.0550010
## [127]  0.7580679  0.7897237  0.8216123  0.8285115  1.0848545  0.7696900
## [133]  1.1328093  0.8656563  0.5213297  1.2402470  1.4559132  2.2239371
## [139]  2.0529210  0.8180809  0.4040854  0.8056103  0.5169173  0.5555556
## [145]  1.3568704  3.7831094  1.8175860  2.4099509  5.5042017  1.8261733
## [151]  3.6516045  6.0134508  0.7435116  3.0984233  2.7399383  2.2203525
## [157]  0.7397454  0.7186292  0.5566541  0.6475959  0.3951030  0.7765315
## [163] 20.4238740  8.6549725 14.6956371 17.7529844 18.2880583 10.6007223
## [169] 14.0121689 17.8378033  5.7364652 13.8129496  5.0808733  8.4935858
## [175] 11.1696643  1.7610218  1.5915532  1.4060783  1.2011323  1.2609247
## [181]  1.3418081  1.1752912  1.5601314  0.8744723  1.9852570  9.3125000
## [187]  4.7396504  2.5177131  5.9096296  0.3755796  0.5881089  0.3764420
## [193]  0.8618825  0.8180703  2.2380675  0.3500949
tasa <- data$countFallecidos / data$countPositivos
tasa_mil <- tasa * 1000
tasa_mil
##   [1]   56.85454  185.08997  129.25483   31.88739  192.98246  545.45455
##   [7]   89.62390  329.11392  574.07407  355.93220  396.69421  295.28986
##  [13]  607.14286  375.90862  513.51351  167.18588  560.00000  151.68897
##  [19]  202.05479  279.06977  301.20482  975.90361  265.36313  233.12883
##  [25]  252.26473  276.00000  326.38889  151.01850  290.02193  464.28571
##  [31]  380.00000  467.04871  204.58265  574.80315  209.12356  319.16427
##  [37]  301.69051  310.16043  283.32404  278.38828  271.04377  779.66102
##  [43]  342.10526  130.42613  272.72727  158.05627  185.30351  263.29442
##  [49]  175.62254  282.72251 1055.55556  309.64467  532.60870  357.14286
##  [55]  180.94622  511.73709  299.80080  466.36771  260.57143  156.87919
##  [61]  122.87614  122.97872  460.37736  372.43402  329.26829  276.16279
##  [67]  264.59022  397.16312  421.68675  423.78049  720.58824  381.42748
##  [73]  533.33333  158.57509  158.38150  171.05653  694.44444  514.28571
##  [79]  515.94203  399.63834  216.66667  189.37644  234.69388  201.68067
##  [85]  134.49074  269.23077  192.20999  283.89155  300.54645  187.50000
##  [91]  204.22535  145.80981  866.66667  357.83133  131.94444  174.02597
##  [97]   46.68305  318.18182  474.33930  258.90222  288.25911  162.30366
## [103]  258.49411  249.10851  198.26590  343.24324  283.78576  540.24052
## [109]  261.81818  116.63849  501.20482  296.10829  421.12421 1222.22222
## [115]  317.68650  149.90138  333.33333  227.37819  481.50470  145.09804
## [121]  126.22549  235.95506  292.82248  310.90652  307.95371  202.71467
## [127]  246.00264  259.48187 1742.85714  296.64812  228.11671  224.55001
## [133]  374.67866  274.28800  230.31283  853.21101  411.01695  176.61488
## [139]   49.30468   47.92043  110.86798  244.18431   19.08714  128.65497
## [145]  197.40260   79.15994   52.07329   99.60913  129.67033  178.31638
## [151]   78.14680  197.76119  230.90909  156.30975  300.95238  457.48988
## [157]  736.54709  240.96386  291.71745  426.70401  267.77977  371.02754
## [163]  313.24004  263.55140  316.86047  422.38267  308.90052  263.15789
## [169]  324.86631  359.37500  246.61556  222.22222  210.91881  297.22222
## [175]  604.57516  164.37247   45.19774   91.85606  117.50366  160.82359
## [181]  132.60160  189.18919  114.58333  140.73352  104.23305  135.33835
## [187]  105.91133  159.73742  242.85714  331.27572  179.40423  176.36023
## [193]  229.81366  180.20777  115.75179   17.09402