In this paper we explore the following two questions
For population health analysis we look at the events that caused either death or injury, for economic analysis we look at the sum of crop and property damage. Depending on the geographic layout of a region the damage might be due to different weather events e.g. the northern regions may have more issues due to cold, snow etc. where as the coastal regions will have issues with tsunami, tidal waves, coastal flooding etc. the inner plains may have damages due to wind or flooding.
We try in this analysis to determing which are the most dangerous conditions for each state so that the state resources can be devoted to planning for those conditions.
Download load and examine the dataset
if(!file.exists("data.csv.bz")){
download.file("https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2","data.csv.bz")
}
data<-read.csv(bzfile("data.csv.bz"))
As a part of the data cleaning we will do the following steps
data_tidy<-data %>%
mutate(BGN_DATE=mdy_hms(BGN_DATE)) %>%
filter(FATALITIES>0 |INJURIES>0 | PROPDMG>0 | CROPDMG >0) %>%
mutate(PROPDMG_multiplier=ifelse(PROPDMGEXP=="B",1000000000,
ifelse(PROPDMGEXP=="b",1000000000,
ifelse(PROPDMGEXP=="m",1000000,
ifelse(PROPDMGEXP=="M",1000000,
ifelse(PROPDMGEXP=="K",1000,
ifelse(PROPDMGEXP=="k",1000,
ifelse(PROPDMGEXP=="h",100,
ifelse(PROPDMGEXP=="H",100,
ifelse(PROPDMGEXP=="-",0,
ifelse(PROPDMGEXP=="?",0,
ifelse(PROPDMGEXP=="+",0,
ifelse(PROPDMGEXP==" ",0,
ifelse(PROPDMGEXP=="",0,
10^extract_numeric(PROPDMGEXP))))))))))))))) %>%
mutate(CROPDMG_multiplier=ifelse(PROPDMGEXP=="B",1000000000,
ifelse(CROPDMGEXP=="b",1000000000,
ifelse(CROPDMGEXP=="m",1000000,
ifelse(CROPDMGEXP=="M",1000000,
ifelse(CROPDMGEXP=="K",1000,
ifelse(CROPDMGEXP=="k",1000,
ifelse(CROPDMGEXP=="h",100,
ifelse(CROPDMGEXP=="H",100,
ifelse(CROPDMGEXP=="-",0,
ifelse(CROPDMGEXP=="?",0,
ifelse(CROPDMGEXP=="+",0,
ifelse(CROPDMGEXP==" ",0,
ifelse(CROPDMGEXP=="",0,
10^extract_numeric(CROPDMGEXP))))))))))))))) %>%
mutate (PROPDMG=PROPDMG*PROPDMG_multiplier,CROPDMG=CROPDMG*CROPDMG_multiplier)%>%
mutate(EVTYPE=sub("S$","",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub("\\.$","",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub("coast.*flood.*","Coastal Flooding",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".* cold.*","Cold",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub("cold.*","Cold",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub("hypothermia.*","Cold",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub("^flood.*","Flood",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*flash.*flood.*","Flood",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*river.*flood.*","Flood",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*rapidly.*rising.*","Flood",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*wind.*","Wind",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*heat.*","Heat",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*freezing.*","Freezing Rain",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*hurricane.*","Hurricane",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*slide.*","Landslide",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*surf.*","High Surf",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*gusty.*","Gusty Winds",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*[ /]sea.*","High Sea",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*thunder.*","Thunderstorm",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*tstm.*","Thunderstorm",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*high wind.*","High Wind",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*Tornado.*","Tornado",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*Trop.*","Tropical Storm",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*snow.*","Snow",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*winter w.*","Winter Weather",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*wintry.*","Winter Weather",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*fire.*","WildFire",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*hail.*","Hail",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub(".*lightning.*","Lightning",EVTYPE,ignore.case=T,perl=T))%>%
mutate(EVTYPE=sub("AVAL.*","AVALANCHE",EVTYPE))
filtered_events<-data_tidy %>%
group_by(EVTYPE) %>%
summarise(Total_Fatalities=sum(FATALITIES),Total_Injuries=sum(INJURIES),Total_PropDMG=sum(PROPDMG),Total_CROPDMG=sum(CROPDMG))
fatal_events<-filtered_events%>%filter(Total_Fatalities>0) %>%arrange(desc(Total_Fatalities))%>% select(EVTYPE,Total_Fatalities)
injury_events<-filtered_events%>%filter(Total_Injuries>0) %>%arrange(desc(Total_Injuries))%>% select(EVTYPE,Total_Injuries)
propdmg_events<-filtered_events%>%filter(Total_PropDMG>0) %>%arrange(desc(Total_PropDMG))%>% select(EVTYPE,Total_PropDMG)
cropdmg_events<-filtered_events%>%filter(Total_CROPDMG>0) %>%arrange(desc(Total_CROPDMG))%>% select(EVTYPE,Total_CROPDMG)
The Top 5 events resulting in fatalities are
print(xtable(head(fatal_events,5)),type="html")
| EVTYPE | Total_Fatalities | |
|---|---|---|
| 1 | Tornado | 5636.00 |
| 2 | Heat | 3138.00 |
| 3 | Flood | 1518.00 |
| 4 | Wind | 1230.00 |
| 5 | Lightning | 817.00 |
Data tells us that maximum fatalities are caused due to Strong wind(Tornado, hurricane, string winds etc.) related events followed by Heat.
The Top 5 events resulting in Injuries are
print(xtable(head(injury_events,5)),type="html")
| EVTYPE | Total_Injuries | |
|---|---|---|
| 1 | Tornado | 91407.00 |
| 2 | Wind | 11462.00 |
| 3 | Heat | 9224.00 |
| 4 | Flood | 8596.00 |
| 5 | Lightning | 5231.00 |
Data here tells us that strong wind related events cause maximum Injuries
the top 5 events resulting in property damage are
print(xtable(head(propdmg_events,5)),type="html")
| EVTYPE | Total_PropDMG | |
|---|---|---|
| 1 | Flood | 167609307178.50 |
| 2 | Hurricane | 84656180010.00 |
| 3 | Tornado | 57003317813.50 |
| 4 | STORM SURGE | 43323536000.00 |
| 5 | Wind | 17940575993.10 |
Maixmum property damage is caused due to flooding followed by hurricane and other wind conditions.
the top 5 events resulting in crop damage are
print(xtable(head(cropdmg_events,5)),type="html")
| EVTYPE | Total_CROPDMG | |
|---|---|---|
| 1 | Hurricane | 1538470792800.00 |
| 2 | Flood | 45840854100.00 |
| 3 | Wind | 14533354530.00 |
| 4 | WildFire | 6896781630.00 |
| 5 | Hail | 3046837470.00 |
Maximum crop damage is caused by hurricane followed by flooding.
Exploratory graphs for different incidents per state
ggplot(data_tidy,aes(x=STATE,y=FATALITIES))+geom_point()
ggplot(data_tidy,aes(x=STATE,y=INJURIES))+geom_point()
A National Disaster plan would require identification of suseptability of the counties and states to different risk types. e.g. A non-costal interior state will not be suseptible to Tsunami and need not account for it during its disaster prepardness program. Similarly a tropical state need not consider snow and related issues.
The following counties in the country are the most suseptible to events leading to loss of life
risky_counties<-data_tidy%>% group_by(COUNTYNAME)%>% summarize(Total_Fatalities=sum(FATALITIES),Total_Injuries=sum(INJURIES),Total_PropDMG=sum(PROPDMG),Total_CROPDMG=sum(CROPDMG))
fatal_events<-risky_counties%>%filter(Total_Fatalities>0) %>%arrange(desc(Total_Fatalities))%>% select(COUNTYNAME,Total_Fatalities)
injury_events<-risky_counties%>%filter(Total_Injuries>0) %>%arrange(desc(Total_Injuries))%>% select(COUNTYNAME,Total_Injuries)
propdmg_events<-risky_counties%>%filter(Total_PropDMG>0) %>%arrange(desc(Total_PropDMG))%>% select(COUNTYNAME,Total_PropDMG)
cropdmg_events<-risky_counties%>%filter(Total_CROPDMG>0) %>%arrange(desc(Total_CROPDMG))%>% select(COUNTYNAME,Total_CROPDMG)
The Top 5 events resulting in fatalities are
print(xtable(head(fatal_events,5)),type="html")
| COUNTYNAME | Total_Fatalities | |
|---|---|---|
| 1 | ILZ003>006 - 008 - 010>014 - 019>023 - 032 - 033 - 039 | 585.00 |
| 2 | ILZ014 | 290.00 |
| 3 | JASPER | 175.00 |
| 4 | JEFFERSON | 174.00 |
| 5 | PAZ054>055 - 060>062 - 067>071 | 165.00 |
The Top 5 events resulting in Injuries are
print(xtable(head(injury_events,5)),type="html")
| COUNTYNAME | Total_Injuries | |
|---|---|---|
| 1 | JEFFERSON | 2554.00 |
| 2 | GREENE | 1865.00 |
| 3 | WICHITA | 1856.00 |
| 4 | MADISON | 1621.00 |
| 5 | OHZ42>088 | 1568.00 |
the top 5 events resulting in property damage are
print(xtable(head(propdmg_events,5)),type="html")
| COUNTYNAME | Total_PropDMG | |
|---|---|---|
| 1 | NAPA | 115116385000.00 |
| 2 | LAZ040 - 059 - 061>064 - 067>070 | 31300000000.00 |
| 3 | LAZ034>040 - 046>050 - 056>070 | 17079580000.00 |
| 4 | MSZ080>082 | 11264135000.00 |
| 5 | FLZ068>069 - 072 - 074 | 10000325000.00 |
the top 5 events resulting in crop damage are
print(xtable(head(cropdmg_events,5)),type="html")
| COUNTYNAME | Total_CROPDMG | |
|---|---|---|
| 1 | NCZ007>011 - 021>028 - 038>043 - 073>078 - 083>086 - 088>089 | 500003000000.00 |
| 2 | FLZ001>006 | 325000000000.00 |
| 3 | PRZ005 - 013 - 069 - 097 - 113 - 123 - 127 | 301014000000.00 |
| 4 | FLZ055 - 060>062 - 065 | 285000000000.00 |
| 5 | FLZ041 - 047 - 054 - 059 - 064 | 93208700000.00 |
risky_state<-data_tidy%>%
group_by(STATE,EVTYPE)%>%
summarize(Total_Fatalities=sum(FATALITIES),Total_Injuries=sum(INJURIES),Total_PropDMG=sum(PROPDMG),Total_CROPDMG=sum(CROPDMG)) %>%
ungroup() %>%
group_by(STATE) %>%
filter(Total_Fatalities>10) %>%
arrange(desc(Total_Fatalities))
We now print a table of the top 2 events in each state which resulted in the highest number of fatalities greater than 10.
print(xtable(top_n(risky_state,2,Total_Fatalities) ),type="html")
| STATE | EVTYPE | Total_Fatalities | Total_Injuries | Total_PropDMG | Total_CROPDMG | |
|---|---|---|---|---|---|---|
| 1 | AK | AVALANCHE | 33.00 | 17.00 | 869000.00 | 0.00 |
| 2 | AL | Tornado | 617.00 | 7929.00 | 6321297560.00 | 56797500.00 |
| 3 | AL | Wind | 48.00 | 451.00 | 304547150.00 | 10011402500.00 |
| 4 | AN | Wind | 12.00 | 22.00 | 274000.00 | 0.00 |
| 5 | AR | Tornado | 379.00 | 5116.00 | 2590007310.00 | 1507010.00 |
| 6 | AR | Flood | 61.00 | 42.00 | 634407580.00 | 150090000.00 |
| 7 | AS | TSUNAMI | 32.00 | 129.00 | 81000000.00 | 20000.00 |
| 8 | AZ | Flood | 63.00 | 158.00 | 120458600.00 | 13505000.00 |
| 9 | AZ | Heat | 58.00 | 0.00 | 0.00 | 0.00 |
| 10 | CA | Heat | 118.00 | 265.00 | 180000.00 | 492402000.00 |
| 11 | CA | Flood | 68.00 | 80.00 | 117116411000.00 | 33279944000.00 |
| 12 | CO | AVALANCHE | 48.00 | 35.00 | 491800.00 | 0.00 |
| 13 | CO | Lightning | 48.00 | 260.00 | 16895688.00 | 93400.00 |
| 14 | CT | Wind | 14.00 | 82.00 | 23446600.00 | 0.00 |
| 15 | DC | Heat | 22.00 | 316.00 | 0.00 | 0.00 |
| 16 | FL | RIP CURRENT | 271.00 | 247.00 | 0.00 | 0.00 |
| 17 | FL | Tornado | 161.00 | 3344.00 | 1752331590.00 | 153500.00 |
| 18 | GA | Tornado | 180.00 | 3926.00 | 3261026670.00 | 10785500.00 |
| 19 | GA | Wind | 44.00 | 416.00 | 446731435.00 | 78657800.00 |
| 20 | GU | RIP CURRENT | 38.00 | 55.00 | 42000.00 | 0.00 |
| 21 | GU | HEAVY RAIN | 19.00 | 8.00 | 2020000.00 | 0.00 |
| 22 | HI | High Surf | 28.00 | 32.00 | 14850500.00 | 1500000.00 |
| 23 | IA | Tornado | 81.00 | 2208.00 | 2286576200.00 | 5611110.00 |
| 24 | IA | Wind | 14.00 | 318.00 | 400063430.00 | 155253330.00 |
| 25 | ID | AVALANCHE | 16.00 | 9.00 | 36000.00 | 0.00 |
| 26 | ID | Wind | 13.00 | 178.00 | 28003100.00 | 6041000.00 |
| 27 | IL | Heat | 983.00 | 594.00 | 55000.00 | 460000.00 |
| 28 | IL | Tornado | 203.00 | 4145.00 | 1780614040.00 | 2298300.00 |
| 29 | IN | Tornado | 252.00 | 4224.00 | 2594793890.00 | 516000.00 |
| 30 | IN | Flood | 43.00 | 13.00 | 1167733650.00 | 790916500.00 |
| 31 | KS | Tornado | 236.00 | 2721.00 | 2669890670.00 | 12275000.00 |
| 32 | KS | Flood | 24.00 | 23.00 | 547780350.00 | 108071000.00 |
| 33 | KY | Tornado | 125.00 | 2806.00 | 888768680.00 | 1908000.00 |
| 34 | KY | Flood | 59.00 | 27.00 | 790311000.00 | 39120500.00 |
| 35 | LA | Tornado | 156.00 | 2676.00 | 1229367890.00 | 3843000.00 |
| 36 | LA | Heat | 62.00 | 3.00 | 110000.00 | 0.00 |
| 37 | MA | Tornado | 108.00 | 1758.00 | 756039145.00 | 0.00 |
| 38 | MA | Wind | 16.00 | 151.00 | 57680690.00 | 1262000.00 |
| 39 | MD | Heat | 100.00 | 545.00 | 30000.00 | 4705780.00 |
| 40 | MD | Flood | 13.00 | 29.00 | 148993000.00 | 1385000.00 |
| 41 | MD | Lightning | 13.00 | 73.00 | 24740600.00 | 6000.00 |
| 42 | MI | Tornado | 243.00 | 3362.00 | 1071765550.00 | 1513000.00 |
| 43 | MI | Wind | 55.00 | 384.00 | 434489650.00 | 49613000.00 |
| 44 | MN | Tornado | 99.00 | 1976.00 | 1903701140.00 | 13196050.00 |
| 45 | MN | Flood | 18.00 | 40.00 | 1557228400.00 | 115991500.00 |
| 46 | MO | Tornado | 388.00 | 4330.00 | 4800701725.00 | 22266000.00 |
| 47 | MO | Heat | 233.00 | 4185.00 | 469000.00 | 875000.00 |
| 48 | MS | Tornado | 450.00 | 6246.00 | 2442464530.00 | 54135000.00 |
| 49 | MS | Heat | 26.00 | 5.00 | 0.00 | 76500.00 |
| 50 | MT | Wind | 12.00 | 51.00 | 42984100.00 | 15431000.00 |
| 51 | NC | Tornado | 126.00 | 2548.00 | 1551933680.00 | 4437000.00 |
| 52 | NC | Flood | 66.00 | 25.00 | 1044989050.00 | 274506900.00 |
| 53 | ND | Tornado | 25.00 | 326.00 | 172766270.00 | 11735000.00 |
| 54 | NE | Tornado | 54.00 | 1158.00 | 1718164710.00 | 27545750.00 |
| 55 | NE | WINTER STORM | 11.00 | 22.00 | 52094000.00 | 4720000.00 |
| 56 | NH | Wind | 14.00 | 54.00 | 18785500.00 | 0.00 |
| 57 | NJ | Heat | 48.00 | 304.00 | 0.00 | 0.00 |
| 58 | NJ | Wind | 31.00 | 301.00 | 93692800.00 | 1200000.00 |
| 59 | NM | Flood | 18.00 | 18.00 | 81007500.00 | 5381000.00 |
| 60 | NM | Cold | 12.00 | 1.00 | 925000.00 | 0.00 |
| 61 | NM | Lightning | 12.00 | 52.00 | 711500.00 | 0.00 |
| 62 | NV | Heat | 67.00 | 0.00 | 0.00 | 0.00 |
| 63 | NV | Wind | 12.00 | 61.00 | 72060600.00 | 120050.00 |
| 64 | NY | Heat | 100.00 | 51.00 | 0.00 | 0.00 |
| 65 | NY | Wind | 70.00 | 469.00 | 633205470.00 | 12394000.00 |
| 66 | OH | Tornado | 191.00 | 4442.00 | 2283157790.00 | 5383500.00 |
| 67 | OH | Wind | 61.00 | 399.00 | 892370200.00 | 17349000.00 |
| 68 | OK | Tornado | 296.00 | 4829.00 | 3268708233.00 | 50556550.00 |
| 69 | OK | Heat | 87.00 | 219.00 | 10000.00 | 0.00 |
| 70 | OR | Wind | 21.00 | 68.00 | 116853150.00 | 6110000.00 |
| 71 | OR | Flood | 16.00 | 13.00 | 723562500.00 | 18860000.00 |
| 72 | PA | Heat | 514.00 | 381.00 | 205000.00 | 50000.00 |
| 73 | PA | Flood | 86.00 | 164.00 | 2522659509.00 | 4505000.00 |
| 74 | PR | Flood | 42.00 | 4.00 | 313444650.00 | 60570000.00 |
| 75 | PR | Hurricane | 19.00 | 1.00 | 1824431000.00 | 301150000000.00 |
| 76 | SC | Tornado | 59.00 | 1314.00 | 531745190.00 | 5266050.00 |
| 77 | SC | Heat | 41.00 | 20.00 | 0.00 | 0.00 |
| 78 | SD | Tornado | 18.00 | 452.00 | 231213780.00 | 640100.00 |
| 79 | SD | Wind | 11.00 | 165.00 | 91136950.00 | 22487100.00 |
| 80 | TN | Tornado | 368.00 | 4748.00 | 1541799890.00 | 2679000.00 |
| 81 | TN | Flood | 58.00 | 45.00 | 4764747170.00 | 1005867000.00 |
| 82 | TX | Tornado | 538.00 | 8207.00 | 3720875840.00 | 81889100.00 |
| 83 | TX | Heat | 298.00 | 787.00 | 200000.00 | 50000.00 |
| 84 | UT | AVALANCHE | 44.00 | 25.00 | 70000.00 | 0.00 |
| 85 | UT | Lightning | 22.00 | 50.00 | 1435800.00 | 50000.00 |
| 86 | VA | Flood | 47.00 | 16.00 | 401930947.00 | 92610550.00 |
| 87 | VA | Tornado | 36.00 | 914.00 | 439239250.00 | 2156000.00 |
| 88 | WA | Wind | 50.00 | 106.00 | 164900700.00 | 37695000.00 |
| 89 | WA | AVALANCHE | 35.00 | 36.00 | 2100000.00 | 0.00 |
| 90 | WI | Heat | 98.00 | 149.00 | 37000.00 | 0.00 |
| 91 | WI | Tornado | 96.00 | 1601.00 | 958093080.00 | 16513700.00 |
| 92 | WV | Flood | 42.00 | 12.00 | 786398100.00 | 2400000.00 |
| 93 | WV | Wind | 13.00 | 160.00 | 38065750.00 | 850100.00 |
| 94 | WY | AVALANCHE | 23.00 | 21.00 | 15000.00 | 0.00 |
We now print a table of the top 2 events in each state which resulted in the highest number of injuries greater than 10.
print(xtable(top_n(risky_state,2,Total_Injuries) ),type="html")
| STATE | EVTYPE | Total_Fatalities | Total_Injuries | Total_PropDMG | Total_CROPDMG | |
|---|---|---|---|---|---|---|
| 1 | AK | AVALANCHE | 33.00 | 17.00 | 869000.00 | 0.00 |
| 2 | AL | Tornado | 617.00 | 7929.00 | 6321297560.00 | 56797500.00 |
| 3 | AL | Wind | 48.00 | 451.00 | 304547150.00 | 10011402500.00 |
| 4 | AN | Wind | 12.00 | 22.00 | 274000.00 | 0.00 |
| 5 | AR | Tornado | 379.00 | 5116.00 | 2590007310.00 | 1507010.00 |
| 6 | AR | Wind | 28.00 | 245.00 | 126465710.00 | 100000.00 |
| 7 | AS | TSUNAMI | 32.00 | 129.00 | 81000000.00 | 20000.00 |
| 8 | AZ | Wind | 20.00 | 212.00 | 504466300.00 | 165000.00 |
| 9 | AZ | DUST STORM | 15.00 | 179.00 | 2238000.00 | 0.00 |
| 10 | CA | WildFire | 39.00 | 1128.00 | 5033787830.00 | 6634460000.00 |
| 11 | CA | FOG | 23.00 | 408.00 | 8751000.00 | 0.00 |
| 12 | CO | Lightning | 48.00 | 260.00 | 16895688.00 | 93400.00 |
| 13 | CO | Wind | 13.00 | 160.00 | 70890603.00 | 18156000.00 |
| 14 | CT | Wind | 14.00 | 82.00 | 23446600.00 | 0.00 |
| 15 | DC | Heat | 22.00 | 316.00 | 0.00 | 0.00 |
| 16 | FL | Tornado | 161.00 | 3344.00 | 1752331590.00 | 153500.00 |
| 17 | FL | Lightning | 123.00 | 859.00 | 83919350.00 | 81000.00 |
| 18 | GA | Tornado | 180.00 | 3926.00 | 3261026670.00 | 10785500.00 |
| 19 | GA | Wind | 44.00 | 416.00 | 446731435.00 | 78657800.00 |
| 20 | GU | RIP CURRENT | 38.00 | 55.00 | 42000.00 | 0.00 |
| 21 | GU | HEAVY RAIN | 19.00 | 8.00 | 2020000.00 | 0.00 |
| 22 | GU | High Surf | 16.00 | 8.00 | 0.00 | 0.00 |
| 23 | HI | High Surf | 28.00 | 32.00 | 14850500.00 | 1500000.00 |
| 24 | IA | Tornado | 81.00 | 2208.00 | 2286576200.00 | 5611110.00 |
| 25 | IA | Wind | 14.00 | 318.00 | 400063430.00 | 155253330.00 |
| 26 | ID | AVALANCHE | 16.00 | 9.00 | 36000.00 | 0.00 |
| 27 | ID | Wind | 13.00 | 178.00 | 28003100.00 | 6041000.00 |
| 28 | IL | Tornado | 203.00 | 4145.00 | 1780614040.00 | 2298300.00 |
| 29 | IL | Wind | 37.00 | 606.00 | 639799080.00 | 156490500.00 |
| 30 | IN | Tornado | 252.00 | 4224.00 | 2594793890.00 | 516000.00 |
| 31 | IN | Wind | 40.00 | 296.00 | 127536857.10 | 3735500.00 |
| 32 | KS | Tornado | 236.00 | 2721.00 | 2669890670.00 | 12275000.00 |
| 33 | KS | Wind | 19.00 | 373.00 | 337778440.00 | 43432100.00 |
| 34 | KY | Tornado | 125.00 | 2806.00 | 888768680.00 | 1908000.00 |
| 35 | KY | Wind | 23.00 | 440.00 | 362460410.00 | 17826700.00 |
| 36 | LA | Tornado | 156.00 | 2676.00 | 1229367890.00 | 3843000.00 |
| 37 | LA | Wind | 34.00 | 288.00 | 851129050.00 | 1712000.00 |
| 38 | MA | Tornado | 108.00 | 1758.00 | 756039145.00 | 0.00 |
| 39 | MA | Wind | 16.00 | 151.00 | 57680690.00 | 1262000.00 |
| 40 | MD | Heat | 100.00 | 545.00 | 30000.00 | 4705780.00 |
| 41 | MD | Lightning | 13.00 | 73.00 | 24740600.00 | 6000.00 |
| 42 | MI | Tornado | 243.00 | 3362.00 | 1071765550.00 | 1513000.00 |
| 43 | MI | Heat | 23.00 | 594.00 | 0.00 | 0.00 |
| 44 | MN | Tornado | 99.00 | 1976.00 | 1903701140.00 | 13196050.00 |
| 45 | MN | Flood | 18.00 | 40.00 | 1557228400.00 | 115991500.00 |
| 46 | MO | Tornado | 388.00 | 4330.00 | 4800701725.00 | 22266000.00 |
| 47 | MO | Heat | 233.00 | 4185.00 | 469000.00 | 875000.00 |
| 48 | MS | Tornado | 450.00 | 6246.00 | 2442464530.00 | 54135000.00 |
| 49 | MS | Wind | 23.00 | 252.00 | 269963760.00 | 13843300.00 |
| 50 | MT | Wind | 12.00 | 51.00 | 42984100.00 | 15431000.00 |
| 51 | NC | Tornado | 126.00 | 2548.00 | 1551933680.00 | 4437000.00 |
| 52 | NC | Lightning | 29.00 | 278.00 | 48380000.00 | 2070000.00 |
| 53 | ND | Tornado | 25.00 | 326.00 | 172766270.00 | 11735000.00 |
| 54 | NE | Tornado | 54.00 | 1158.00 | 1718164710.00 | 27545750.00 |
| 55 | NE | WINTER STORM | 11.00 | 22.00 | 52094000.00 | 4720000.00 |
| 56 | NH | Wind | 14.00 | 54.00 | 18785500.00 | 0.00 |
| 57 | NJ | Heat | 48.00 | 304.00 | 0.00 | 0.00 |
| 58 | NJ | Wind | 31.00 | 301.00 | 93692800.00 | 1200000.00 |
| 59 | NM | Lightning | 12.00 | 52.00 | 711500.00 | 0.00 |
| 60 | NM | Wind | 11.00 | 68.00 | 23457750.00 | 288000.00 |
| 61 | NV | Heat | 67.00 | 0.00 | 0.00 | 0.00 |
| 62 | NV | Wind | 12.00 | 61.00 | 72060600.00 | 120050.00 |
| 63 | NY | Wind | 70.00 | 469.00 | 633205470.00 | 12394000.00 |
| 64 | NY | Tornado | 22.00 | 315.00 | 466573840.00 | 820000.00 |
| 65 | OH | Tornado | 191.00 | 4442.00 | 2283157790.00 | 5383500.00 |
| 66 | OH | Wind | 61.00 | 399.00 | 892370200.00 | 17349000.00 |
| 67 | OK | Tornado | 296.00 | 4829.00 | 3268708233.00 | 50556550.00 |
| 68 | OK | Wind | 11.00 | 329.00 | 1020753990.00 | 125000.00 |
| 69 | OR | Wind | 21.00 | 68.00 | 116853150.00 | 6110000.00 |
| 70 | OR | Flood | 16.00 | 13.00 | 723562500.00 | 18860000.00 |
| 71 | PA | Tornado | 82.00 | 1241.00 | 1789088400.00 | 7129000.00 |
| 72 | PA | Wind | 46.00 | 394.00 | 239904970.00 | 531500.00 |
| 73 | PR | HEAVY RAIN | 13.00 | 10.00 | 1680080.00 | 100000.00 |
| 74 | PR | High Surf | 11.00 | 9.00 | 2842000.00 | 0.00 |
| 75 | SC | Tornado | 59.00 | 1314.00 | 531745190.00 | 5266050.00 |
| 76 | SC | Wind | 29.00 | 265.00 | 173193950.00 | 17324000.00 |
| 77 | SD | Tornado | 18.00 | 452.00 | 231213780.00 | 640100.00 |
| 78 | SD | Wind | 11.00 | 165.00 | 91136950.00 | 22487100.00 |
| 79 | TN | Tornado | 368.00 | 4748.00 | 1541799890.00 | 2679000.00 |
| 80 | TN | Wind | 20.00 | 260.00 | 201336430.00 | 11575500.00 |
| 81 | TX | Tornado | 538.00 | 8207.00 | 3720875840.00 | 81889100.00 |
| 82 | TX | Flood | 254.00 | 6925.00 | 2142354150.00 | 113670000.00 |
| 83 | UT | WINTER STORM | 20.00 | 415.00 | 11822000.00 | 298000.00 |
| 84 | UT | Snow | 11.00 | 259.00 | 54460750.00 | 72100.00 |
| 85 | VA | Tornado | 36.00 | 914.00 | 439239250.00 | 2156000.00 |
| 86 | VA | Wind | 25.00 | 306.00 | 152791866.00 | 23020550.00 |
| 87 | WA | Wind | 50.00 | 106.00 | 164900700.00 | 37695000.00 |
| 88 | WA | AVALANCHE | 35.00 | 36.00 | 2100000.00 | 0.00 |
| 89 | WI | Tornado | 96.00 | 1601.00 | 958093080.00 | 16513700.00 |
| 90 | WI | Wind | 27.00 | 266.00 | 274111050.00 | 44899750.00 |
| 91 | WV | Flood | 42.00 | 12.00 | 786398100.00 | 2400000.00 |
| 92 | WV | Wind | 13.00 | 160.00 | 38065750.00 | 850100.00 |
| 93 | WY | AVALANCHE | 23.00 | 21.00 | 15000.00 | 0.00 |
Similarly we print a table for Financial loss
financial_risk<-risky_state%>% mutate(Total_loss_Millions=(extract_numeric(Total_PropDMG)+extract_numeric(Total_CROPDMG))/1000000)%>%
filter(Total_loss_Millions>50)%>%
arrange(desc(extract_numeric(Total_loss_Millions)))
tbl=xtable(top_n(financial_risk,2,Total_loss_Millions))
caption( tbl)<-"Top Events causing major financial loss in each States"
print(tbl,type="html")
| STATE | EVTYPE | Total_Fatalities | Total_Injuries | Total_PropDMG | Total_CROPDMG | Total_loss_Millions | |
|---|---|---|---|---|---|---|---|
| 1 | AL | Wind | 48.00 | 451.00 | 304547150.00 | 10011402500.00 | 10315.95 |
| 2 | AL | Tornado | 617.00 | 7929.00 | 6321297560.00 | 56797500.00 | 6378.10 |
| 3 | AR | Tornado | 379.00 | 5116.00 | 2590007310.00 | 1507010.00 | 2591.51 |
| 4 | AR | Flood | 61.00 | 42.00 | 634407580.00 | 150090000.00 | 784.50 |
| 5 | AZ | Wind | 20.00 | 212.00 | 504466300.00 | 165000.00 | 504.63 |
| 6 | AZ | Flood | 63.00 | 158.00 | 120458600.00 | 13505000.00 | 133.96 |
| 7 | CA | Flood | 68.00 | 80.00 | 117116411000.00 | 33279944000.00 | 150396.36 |
| 8 | CA | WildFire | 39.00 | 1128.00 | 5033787830.00 | 6634460000.00 | 11668.25 |
| 9 | CO | Flood | 12.00 | 63.00 | 458286857.50 | 5719000.00 | 464.01 |
| 10 | CO | Wind | 13.00 | 160.00 | 70890603.00 | 18156000.00 | 89.05 |
| 11 | FL | Hurricane | 47.00 | 812.00 | 31794496000.00 | 709239710000.00 | 741034.21 |
| 12 | FL | Wind | 67.00 | 314.00 | 4932331780.00 | 2844228900.00 | 7776.56 |
| 13 | GA | Tornado | 180.00 | 3926.00 | 3261026670.00 | 10785500.00 | 3271.81 |
| 14 | GA | Flood | 43.00 | 26.00 | 701386720.00 | 13941550.00 | 715.33 |
| 15 | IA | Tornado | 81.00 | 2208.00 | 2286576200.00 | 5611110.00 | 2292.19 |
| 16 | IA | Wind | 14.00 | 318.00 | 400063430.00 | 155253330.00 | 555.32 |
| 17 | IL | Flood | 24.00 | 31.00 | 6047132810.00 | 5070459050.00 | 11117.59 |
| 18 | IL | Tornado | 203.00 | 4145.00 | 1780614040.00 | 2298300.00 | 1782.91 |
| 19 | IN | Tornado | 252.00 | 4224.00 | 2594793890.00 | 516000.00 | 2595.31 |
| 20 | IN | Flood | 43.00 | 13.00 | 1167733650.00 | 790916500.00 | 1958.65 |
| 21 | KS | Tornado | 236.00 | 2721.00 | 2669890670.00 | 12275000.00 | 2682.17 |
| 22 | KS | Flood | 24.00 | 23.00 | 547780350.00 | 108071000.00 | 655.85 |
| 23 | KY | Tornado | 125.00 | 2806.00 | 888768680.00 | 1908000.00 | 890.68 |
| 24 | KY | Flood | 59.00 | 27.00 | 790311000.00 | 39120500.00 | 829.43 |
| 25 | LA | Tornado | 156.00 | 2676.00 | 1229367890.00 | 3843000.00 | 1233.21 |
| 26 | LA | Wind | 34.00 | 288.00 | 851129050.00 | 1712000.00 | 852.84 |
| 27 | MA | Tornado | 108.00 | 1758.00 | 756039145.00 | 0.00 | 756.04 |
| 28 | MA | Wind | 16.00 | 151.00 | 57680690.00 | 1262000.00 | 58.94 |
| 29 | MD | Flood | 13.00 | 29.00 | 148993000.00 | 1385000.00 | 150.38 |
| 30 | MI | Tornado | 243.00 | 3362.00 | 1071765550.00 | 1513000.00 | 1073.28 |
| 31 | MI | Wind | 55.00 | 384.00 | 434489650.00 | 49613000.00 | 484.10 |
| 32 | MN | Tornado | 99.00 | 1976.00 | 1903701140.00 | 13196050.00 | 1916.90 |
| 33 | MN | Flood | 18.00 | 40.00 | 1557228400.00 | 115991500.00 | 1673.22 |
| 34 | MO | Tornado | 388.00 | 4330.00 | 4800701725.00 | 22266000.00 | 4822.97 |
| 35 | MO | Flood | 88.00 | 40.00 | 848635730.00 | 664863300.00 | 1513.50 |
| 36 | MS | Hurricane | 16.00 | 105.00 | 14178100010.00 | 1514980800.00 | 15693.08 |
| 37 | MS | Tornado | 450.00 | 6246.00 | 2442464530.00 | 54135000.00 | 2496.60 |
| 38 | MT | Wind | 12.00 | 51.00 | 42984100.00 | 15431000.00 | 58.42 |
| 39 | NC | Hurricane | 32.00 | 25.00 | 5569621000.00 | 500956730000.00 | 506526.35 |
| 40 | NC | Tornado | 126.00 | 2548.00 | 1551933680.00 | 4437000.00 | 1556.37 |
| 41 | ND | Tornado | 25.00 | 326.00 | 172766270.00 | 11735000.00 | 184.50 |
| 42 | NE | Tornado | 54.00 | 1158.00 | 1718164710.00 | 27545750.00 | 1745.71 |
| 43 | NE | WINTER STORM | 11.00 | 22.00 | 52094000.00 | 4720000.00 | 56.81 |
| 44 | NJ | Flood | 25.00 | 197.00 | 2850860000.00 | 750000.00 | 2851.61 |
| 45 | NJ | Wind | 31.00 | 301.00 | 93692800.00 | 1200000.00 | 94.89 |
| 46 | NM | Flood | 18.00 | 18.00 | 81007500.00 | 5381000.00 | 86.39 |
| 47 | NV | Wind | 12.00 | 61.00 | 72060600.00 | 120050.00 | 72.18 |
| 48 | NY | Flood | 58.00 | 18.00 | 3157497990.00 | 6675000.00 | 3164.17 |
| 49 | NY | Wind | 70.00 | 469.00 | 633205470.00 | 12394000.00 | 645.60 |
| 50 | OH | Tornado | 191.00 | 4442.00 | 2283157790.00 | 5383500.00 | 2288.54 |
| 51 | OH | Flood | 54.00 | 33.00 | 1717479305.00 | 132108000.00 | 1849.59 |
| 52 | OK | Tornado | 296.00 | 4829.00 | 3268708233.00 | 50556550.00 | 3319.26 |
| 53 | OK | Wind | 11.00 | 329.00 | 1020753990.00 | 125000.00 | 1020.88 |
| 54 | OR | Flood | 16.00 | 13.00 | 723562500.00 | 18860000.00 | 742.42 |
| 55 | OR | Wind | 21.00 | 68.00 | 116853150.00 | 6110000.00 | 122.96 |
| 56 | PA | Flood | 86.00 | 164.00 | 2522659509.00 | 4505000.00 | 2527.16 |
| 57 | PA | Tornado | 82.00 | 1241.00 | 1789088400.00 | 7129000.00 | 1796.22 |
| 58 | PR | Hurricane | 19.00 | 1.00 | 1824431000.00 | 301150000000.00 | 1824.43 |
| 59 | PR | Flood | 42.00 | 4.00 | 313444650.00 | 60570000.00 | 374.01 |
| 60 | SC | Tornado | 59.00 | 1314.00 | 531745190.00 | 5266050.00 | 537.01 |
| 61 | SC | Wind | 29.00 | 265.00 | 173193950.00 | 17324000.00 | 190.52 |
| 62 | SD | Tornado | 18.00 | 452.00 | 231213780.00 | 640100.00 | 231.85 |
| 63 | SD | Wind | 11.00 | 165.00 | 91136950.00 | 22487100.00 | 113.62 |
| 64 | TN | Flood | 58.00 | 45.00 | 4764747170.00 | 1005867000.00 | 5770.61 |
| 65 | TN | Tornado | 368.00 | 4748.00 | 1541799890.00 | 2679000.00 | 1544.48 |
| 66 | TX | Tropical Storm | 26.00 | 3.00 | 5491598000.00 | 4190000.00 | 5495.79 |
| 67 | TX | STORM SURGE/TIDE | 11.00 | 0.00 | 4500385000.00 | 0.00 | 4500.39 |
| 68 | UT | Flood | 12.00 | 33.00 | 371183500.00 | 937200.00 | 372.12 |
| 69 | UT | Snow | 11.00 | 259.00 | 54460750.00 | 72100.00 | 54.53 |
| 70 | VA | Flood | 47.00 | 16.00 | 401930947.00 | 92610550.00 | 494.54 |
| 71 | VA | Tornado | 36.00 | 914.00 | 439239250.00 | 2156000.00 | 441.40 |
| 72 | WA | Wind | 50.00 | 106.00 | 164900700.00 | 37695000.00 | 202.60 |
| 73 | WI | Tornado | 96.00 | 1601.00 | 958093080.00 | 16513700.00 | 974.61 |
| 74 | WI | Wind | 27.00 | 266.00 | 274111050.00 | 44899750.00 | 319.01 |
| 75 | WV | Flood | 42.00 | 12.00 | 786398100.00 | 2400000.00 | 788.80 |