IMPORTAR DATA

library(rio)
datita = import("dataOK_all.xlsx")
## New names:
## • `` -> `...1`
str(datita)
## 'data.frame':    196 obs. of  50 variables:
##  $ ...1                   : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ key                    : chr  "AMAZONAS+BAGUA" "AMAZONAS+BONGARA" "AMAZONAS+CHACHAPOYAS" "AMAZONAS+CONDORCANQUI" ...
##  $ Código                 : num  102 103 101 104 105 106 107 202 203 204 ...
##  $ pared1_Ladrillo        : num  4633 1602 3782 291 430 ...
##  $ pared2_Piedra          : num  46 9 22 7 7 7 35 1 0 3 ...
##  $ pared3_Adobe           : num  6639 2729 5881 672 5217 ...
##  $ pared4_Tapia           : num  222 240 2476 8 6052 ...
##  $ pared5_Quincha         : num  2518 157 309 386 346 ...
##  $ pared6_Piedra          : num  127 36 168 7 54 28 518 65 7 6 ...
##  $ pared7_Madera          : num  4484 2505 1270 8145 606 ...
##  $ pared8_Triplay         : num  851 30 91 200 45 24 210 18 0 1 ...
##  $ pared9_Otro            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ pared10_Total          : num  19520 7308 13999 9716 12757 ...
##  $ techo1_Concreto        : num  2187 692 2262 56 187 ...
##  $ techo2_Madera          : num  294 75 160 188 43 48 340 57 12 8 ...
##  $ techo3_Tejas           : num  179 382 3393 177 3071 ...
##  $ techo4_Planchas        : num  13186 6084 8005 2036 9343 ...
##  $ techo5_Caña            : num  160 38 50 15 26 15 196 10 8 5 ...
##  $ techo6_Triplay         : num  106 5 14 10 12 5 62 17 4 3 ...
##  $ techo7_Paja            : num  3408 32 115 7234 75 ...
##  $ techo8_Otro            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ techo9_Total           : num  19520 7308 13999 9716 12757 ...
##  $ piso1_Parquet          : num  6 5 23 2 4 3 20 0 0 5 ...
##  $ piso2_Láminas          : num  19 2 36 0 0 4 32 0 0 1 ...
##  $ piso3_Losetas          : num  647 165 1077 20 46 ...
##  $ piso4_Madera           : num  157 132 240 1523 295 ...
##  $ piso5_Cemento          : num  7121 2917 6189 943 1911 ...
##  $ piso6_Tierra           : num  11569 4087 6434 7228 10501 ...
##  $ piso7_Otro             : num  1 0 0 0 0 0 0 0 0 0 ...
##  $ piso8_Total            : num  19520 7308 13999 9716 12757 ...
##  $ agua1_Red              : num  9429 4569 10647 1307 7172 ...
##  $ agua2_Red_fueraVivienda: num  4392 1497 1619 867 3097 ...
##  $ agua3_Pilón            : num  793 215 184 1003 1112 ...
##  $ agua4_Camión           : num  59 0 49 2 0 0 117 0 0 0 ...
##  $ agua5_Pozo             : num  1792 474 876 2564 819 ...
##  $ agua6_Manantial        : num  270 67 92 431 132 211 471 121 61 27 ...
##  $ agua7_Río              : num  2648 388 488 3428 369 ...
##  $ agua8_Otro             : num  56 61 24 80 9 29 104 2 1 6 ...
##  $ agua9_Vecino           : num  81 37 20 34 47 8 177 9 4 6 ...
##  $ agua10_Total           : num  19520 7308 13999 9716 12757 ...
##  $ elec1_Sí               : num  13204 6025 12248 1792 10886 ...
##  $ elec2_No               : num  6316 1283 1751 7924 1871 ...
##  $ elec3_Total            : num  19520 7308 13999 9716 12757 ...
##  $ departamento           : chr  "AMAZONAS" "AMAZONAS" "AMAZONAS" "AMAZONAS" ...
##  $ provincia              : chr  "BAGUA" "BONGARA" "CHACHAPOYAS" "CONDORCANQUI" ...
##  $ Castillo               : num  25629 8374 15671 13154 12606 ...
##  $ Keiko                  : num  10770 5209 10473 1446 7840 ...
##  $ ganaCastillo           : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ countPositivos         : num  8126 389 2174 3481 456 ...
##  $ countFallecidos        : num  462 72 281 111 88 60 336 26 31 21 ...
datita <- datita[complete.cases(datita), ]
names(datita)
##  [1] "...1"                    "key"                    
##  [3] "Código"                  "pared1_Ladrillo"        
##  [5] "pared2_Piedra"           "pared3_Adobe"           
##  [7] "pared4_Tapia"            "pared5_Quincha"         
##  [9] "pared6_Piedra"           "pared7_Madera"          
## [11] "pared8_Triplay"          "pared9_Otro"            
## [13] "pared10_Total"           "techo1_Concreto"        
## [15] "techo2_Madera"           "techo3_Tejas"           
## [17] "techo4_Planchas"         "techo5_Caña"            
## [19] "techo6_Triplay"          "techo7_Paja"            
## [21] "techo8_Otro"             "techo9_Total"           
## [23] "piso1_Parquet"           "piso2_Láminas"          
## [25] "piso3_Losetas"           "piso4_Madera"           
## [27] "piso5_Cemento"           "piso6_Tierra"           
## [29] "piso7_Otro"              "piso8_Total"            
## [31] "agua1_Red"               "agua2_Red_fueraVivienda"
## [33] "agua3_Pilón"             "agua4_Camión"           
## [35] "agua5_Pozo"              "agua6_Manantial"        
## [37] "agua7_Río"               "agua8_Otro"             
## [39] "agua9_Vecino"            "agua10_Total"           
## [41] "elec1_Sí"                "elec2_No"               
## [43] "elec3_Total"             "departamento"           
## [45] "provincia"               "Castillo"               
## [47] "Keiko"                   "ganaCastillo"           
## [49] "countPositivos"          "countFallecidos"
dontselect=c("...1","key","Código", "agua10_Total", "elec1_Sí", "elec2_No", "elec3_Total", "departamento", "provincia", "Castillo", "Keiko",  "ganaCastillo", "countPositivos", "countFallecidos", "pared10_Total", "techo9_Total", "piso8_Total")
select=setdiff(names(datita),dontselect) 
latentes=datita[,select]

# usaremos:
library(magrittr)
head(latentes,10)%>%
    rmarkdown::paged_table()
latentes <- latentes[complete.cases(latentes), ]
library(polycor)
corMatrix=polycor::hetcor(latentes)$correlations
any(is.na(corMatrix))
## [1] FALSE
any(is.na(latentes))
## [1] FALSE
corMatrix <- cor(latentes, use = "complete.obs")
round(corMatrix,2)
##                         pared1_Ladrillo pared2_Piedra pared3_Adobe pared4_Tapia
## pared1_Ladrillo                    1.00          0.65         0.35        -0.03
## pared2_Piedra                      0.65          1.00         0.20        -0.05
## pared3_Adobe                       0.35          0.20         1.00         0.00
## pared4_Tapia                      -0.03         -0.05         0.00         1.00
## pared5_Quincha                     0.22          0.14         0.15        -0.11
## pared6_Piedra                      0.07          0.10         0.18         0.06
## pared7_Madera                      0.89          0.50         0.16        -0.09
## pared8_Triplay                     0.85          0.50         0.27        -0.09
## pared9_Otro                        0.24          0.26         0.33        -0.07
## techo1_Concreto                    1.00          0.65         0.35        -0.02
## techo2_Madera                      0.96          0.55         0.26        -0.04
## techo3_Tejas                       0.13          0.04         0.45         0.41
## techo4_Planchas                    0.92          0.62         0.46        -0.02
## techo5_Caña                        0.44          0.24         0.38        -0.13
## techo6_Triplay                     0.84          0.49         0.29        -0.10
## techo7_Paja                        0.04          0.02         0.08        -0.12
## techo8_Otro                        0.24          0.26         0.32        -0.07
## piso1_Parquet                      0.99          0.59         0.31        -0.02
## piso2_Láminas                      0.99          0.69         0.30        -0.03
## piso3_Losetas                      1.00          0.62         0.36        -0.03
## piso4_Madera                       0.57          0.32         0.12        -0.02
## piso5_Cemento                      1.00          0.67         0.38        -0.03
## piso6_Tierra                       0.69          0.45         0.72         0.14
## piso7_Otro                         0.87          0.53         0.34        -0.05
## agua1_Red                          1.00          0.64         0.39        -0.02
## agua2_Red_fueraVivienda            0.99          0.59         0.40         0.01
## agua3_Pilón                        0.91          0.84         0.38        -0.02
## agua4_Camión                       0.99          0.61         0.33        -0.06
## agua5_Pozo                         0.37          0.25         0.45         0.02
## agua6_Manantial                   -0.05         -0.03         0.27         0.24
## agua7_Río                          0.01          0.00         0.06        -0.06
## agua8_Otro                         0.57          0.34         0.35        -0.06
## agua9_Vecino                       0.94          0.55         0.41        -0.03
##                         pared5_Quincha pared6_Piedra pared7_Madera
## pared1_Ladrillo                   0.22          0.07          0.89
## pared2_Piedra                     0.14          0.10          0.50
## pared3_Adobe                      0.15          0.18          0.16
## pared4_Tapia                     -0.11          0.06         -0.09
## pared5_Quincha                    1.00         -0.03          0.17
## pared6_Piedra                    -0.03          1.00          0.04
## pared7_Madera                     0.17          0.04          1.00
## pared8_Triplay                    0.45          0.04          0.74
## pared9_Otro                       0.02          0.02          0.15
## techo1_Concreto                   0.20          0.07          0.88
## techo2_Madera                     0.18          0.05          0.94
## techo3_Tejas                     -0.05          0.00          0.03
## techo4_Planchas                   0.43          0.12          0.87
## techo5_Caña                       0.16         -0.05          0.31
## techo6_Triplay                    0.25          0.03          0.73
## techo7_Paja                      -0.06          0.26          0.24
## techo8_Otro                       0.02          0.01          0.17
## piso1_Parquet                     0.17          0.07          0.89
## piso2_Láminas                     0.18          0.07          0.88
## piso3_Losetas                     0.22          0.06          0.89
## piso4_Madera                      0.04          0.02          0.76
## piso5_Cemento                     0.24          0.07          0.89
## piso6_Tierra                      0.50          0.23          0.58
## piso7_Otro                        0.17          0.03          0.78
## agua1_Red                         0.24          0.07          0.89
## agua2_Red_fueraVivienda           0.21          0.10          0.90
## agua3_Pilón                       0.28          0.11          0.79
## agua4_Camión                      0.27          0.06          0.88
## agua5_Pozo                        0.07          0.24          0.45
## agua6_Manantial                  -0.04          0.39          0.00
## agua7_Río                         0.47          0.10          0.19
## agua8_Otro                        0.63          0.09          0.57
## agua9_Vecino                      0.45          0.06          0.86
##                         pared8_Triplay pared9_Otro techo1_Concreto
## pared1_Ladrillo                   0.85        0.24            1.00
## pared2_Piedra                     0.50        0.26            0.65
## pared3_Adobe                      0.27        0.33            0.35
## pared4_Tapia                     -0.09       -0.07           -0.02
## pared5_Quincha                    0.45        0.02            0.20
## pared6_Piedra                     0.04        0.02            0.07
## pared7_Madera                     0.74        0.15            0.88
## pared8_Triplay                    1.00        0.16            0.84
## pared9_Otro                       0.16        1.00            0.25
## techo1_Concreto                   0.84        0.25            1.00
## techo2_Madera                     0.79        0.20            0.96
## techo3_Tejas                      0.04       -0.04            0.13
## techo4_Planchas                   0.85        0.24            0.91
## techo5_Caña                       0.51        0.35            0.44
## techo6_Triplay                    0.93        0.23            0.83
## techo7_Paja                       0.01       -0.03            0.04
## techo8_Otro                       0.17        0.99            0.25
## piso1_Parquet                     0.81        0.21            0.99
## piso2_Láminas                     0.81        0.22            0.99
## piso3_Losetas                     0.85        0.24            1.00
## piso4_Madera                      0.47        0.06            0.56
## piso5_Cemento                     0.85        0.26            0.99
## piso6_Tierra                      0.72        0.23            0.68
## piso7_Otro                        0.72        0.23            0.87
## agua1_Red                         0.85        0.25            1.00
## agua2_Red_fueraVivienda           0.82        0.21            0.99
## agua3_Pilón                       0.79        0.28            0.91
## agua4_Camión                      0.89        0.23            0.99
## agua5_Pozo                        0.29        0.12            0.37
## agua6_Manantial                  -0.08       -0.02           -0.05
## agua7_Río                         0.22       -0.05           -0.02
## agua8_Otro                        0.69        0.19            0.54
## agua9_Vecino                      0.88        0.24            0.93
##                         techo2_Madera techo3_Tejas techo4_Planchas techo5_Caña
## pared1_Ladrillo                  0.96         0.13            0.92        0.44
## pared2_Piedra                    0.55         0.04            0.62        0.24
## pared3_Adobe                     0.26         0.45            0.46        0.38
## pared4_Tapia                    -0.04         0.41           -0.02       -0.13
## pared5_Quincha                   0.18        -0.05            0.43        0.16
## pared6_Piedra                    0.05         0.00            0.12       -0.05
## pared7_Madera                    0.94         0.03            0.87        0.31
## pared8_Triplay                   0.79         0.04            0.85        0.51
## pared9_Otro                      0.20        -0.04            0.24        0.35
## techo1_Concreto                  0.96         0.13            0.91        0.44
## techo2_Madera                    1.00         0.10            0.88        0.39
## techo3_Tejas                     0.10         1.00            0.09       -0.05
## techo4_Planchas                  0.88         0.09            1.00        0.37
## techo5_Caña                      0.39        -0.05            0.37        1.00
## techo6_Triplay                   0.80         0.03            0.76        0.66
## techo7_Paja                      0.08        -0.13            0.13       -0.11
## techo8_Otro                      0.20        -0.05            0.25        0.35
## piso1_Parquet                    0.96         0.13            0.89        0.38
## piso2_Láminas                    0.96         0.12            0.89        0.38
## piso3_Losetas                    0.97         0.14            0.92        0.44
## piso4_Madera                     0.61         0.16            0.63        0.14
## piso5_Cemento                    0.96         0.13            0.93        0.47
## piso6_Tierra                     0.61         0.32            0.84        0.36
## piso7_Otro                       0.83         0.06            0.79        0.54
## agua1_Red                        0.96         0.16            0.93        0.46
## agua2_Red_fueraVivienda          0.96         0.19            0.92        0.40
## agua3_Pilón                      0.86         0.11            0.90        0.38
## agua4_Camión                     0.95         0.10            0.91        0.46
## agua5_Pozo                       0.36         0.04            0.51        0.15
## agua6_Manantial                 -0.05         0.19            0.06       -0.13
## agua7_Río                        0.00        -0.10            0.27       -0.03
## agua8_Otro                       0.52         0.02            0.76        0.36
## agua9_Vecino                     0.90         0.13            0.96        0.45
##                         techo6_Triplay techo7_Paja techo8_Otro piso1_Parquet
## pared1_Ladrillo                   0.84        0.04        0.24          0.99
## pared2_Piedra                     0.49        0.02        0.26          0.59
## pared3_Adobe                      0.29        0.08        0.32          0.31
## pared4_Tapia                     -0.10       -0.12       -0.07         -0.02
## pared5_Quincha                    0.25       -0.06        0.02          0.17
## pared6_Piedra                     0.03        0.26        0.01          0.07
## pared7_Madera                     0.73        0.24        0.17          0.89
## pared8_Triplay                    0.93        0.01        0.17          0.81
## pared9_Otro                       0.23       -0.03        0.99          0.21
## techo1_Concreto                   0.83        0.04        0.25          0.99
## techo2_Madera                     0.80        0.08        0.20          0.96
## techo3_Tejas                      0.03       -0.13       -0.05          0.13
## techo4_Planchas                   0.76        0.13        0.25          0.89
## techo5_Caña                       0.66       -0.11        0.35          0.38
## techo6_Triplay                    1.00       -0.02        0.23          0.80
## techo7_Paja                      -0.02        1.00       -0.02          0.05
## techo8_Otro                       0.23       -0.02        1.00          0.21
## piso1_Parquet                     0.80        0.05        0.21          1.00
## piso2_Láminas                     0.80        0.05        0.22          0.99
## piso3_Losetas                     0.84        0.04        0.24          0.99
## piso4_Madera                      0.43        0.34        0.10          0.57
## piso5_Cemento                     0.85        0.04        0.27          0.98
## piso6_Tierra                      0.62        0.20        0.24          0.63
## piso7_Otro                        0.74        0.02        0.24          0.85
## agua1_Red                         0.84        0.04        0.26          0.98
## agua2_Red_fueraVivienda           0.81        0.06        0.22          0.99
## agua3_Pilón                       0.76        0.08        0.29          0.87
## agua4_Camión                      0.88        0.03        0.23          0.98
## agua5_Pozo                        0.26        0.51        0.15          0.35
## agua6_Manantial                  -0.10        0.33       -0.03         -0.04
## agua7_Río                         0.04        0.43       -0.05         -0.03
## agua8_Otro                        0.53        0.15        0.19          0.50
## agua9_Vecino                      0.81        0.06        0.25          0.91
##                         piso2_Láminas piso3_Losetas piso4_Madera piso5_Cemento
## pared1_Ladrillo                  0.99          1.00         0.57          1.00
## pared2_Piedra                    0.69          0.62         0.32          0.67
## pared3_Adobe                     0.30          0.36         0.12          0.38
## pared4_Tapia                    -0.03         -0.03        -0.02         -0.03
## pared5_Quincha                   0.18          0.22         0.04          0.24
## pared6_Piedra                    0.07          0.06         0.02          0.07
## pared7_Madera                    0.88          0.89         0.76          0.89
## pared8_Triplay                   0.81          0.85         0.47          0.85
## pared9_Otro                      0.22          0.24         0.06          0.26
## techo1_Concreto                  0.99          1.00         0.56          0.99
## techo2_Madera                    0.96          0.97         0.61          0.96
## techo3_Tejas                     0.12          0.14         0.16          0.13
## techo4_Planchas                  0.89          0.92         0.63          0.93
## techo5_Caña                      0.38          0.44         0.14          0.47
## techo6_Triplay                   0.80          0.84         0.43          0.85
## techo7_Paja                      0.05          0.04         0.34          0.04
## techo8_Otro                      0.22          0.24         0.10          0.27
## piso1_Parquet                    0.99          0.99         0.57          0.98
## piso2_Láminas                    1.00          0.99         0.56          0.98
## piso3_Losetas                    0.99          1.00         0.57          0.99
## piso4_Madera                     0.56          0.57         1.00          0.58
## piso5_Cemento                    0.98          0.99         0.58          1.00
## piso6_Tierra                     0.64          0.68         0.38          0.71
## piso7_Otro                       0.85          0.87         0.47          0.87
## agua1_Red                        0.99          1.00         0.58          1.00
## agua2_Red_fueraVivienda          0.98          0.99         0.59          0.98
## agua3_Pilón                      0.92          0.90         0.51          0.92
## agua4_Camión                     0.98          0.99         0.56          0.98
## agua5_Pozo                       0.35          0.35         0.43          0.40
## agua6_Manantial                 -0.05         -0.06        -0.01         -0.05
## agua7_Río                       -0.03          0.01         0.35          0.02
## agua8_Otro                       0.51          0.57         0.59          0.59
## agua9_Vecino                     0.91          0.94         0.59          0.94
##                         piso6_Tierra piso7_Otro agua1_Red
## pared1_Ladrillo                 0.69       0.87      1.00
## pared2_Piedra                   0.45       0.53      0.64
## pared3_Adobe                    0.72       0.34      0.39
## pared4_Tapia                    0.14      -0.05     -0.02
## pared5_Quincha                  0.50       0.17      0.24
## pared6_Piedra                   0.23       0.03      0.07
## pared7_Madera                   0.58       0.78      0.89
## pared8_Triplay                  0.72       0.72      0.85
## pared9_Otro                     0.23       0.23      0.25
## techo1_Concreto                 0.68       0.87      1.00
## techo2_Madera                   0.61       0.83      0.96
## techo3_Tejas                    0.32       0.06      0.16
## techo4_Planchas                 0.84       0.79      0.93
## techo5_Caña                     0.36       0.54      0.46
## techo6_Triplay                  0.62       0.74      0.84
## techo7_Paja                     0.20       0.02      0.04
## techo8_Otro                     0.24       0.24      0.26
## piso1_Parquet                   0.63       0.85      0.98
## piso2_Láminas                   0.64       0.85      0.99
## piso3_Losetas                   0.68       0.87      1.00
## piso4_Madera                    0.38       0.47      0.58
## piso5_Cemento                   0.71       0.87      1.00
## piso6_Tierra                    1.00       0.59      0.72
## piso7_Otro                      0.59       1.00      0.87
## agua1_Red                       0.72       0.87      1.00
## agua2_Red_fueraVivienda         0.72       0.85      0.99
## agua3_Pilón                     0.73       0.77      0.91
## agua4_Camión                    0.69       0.86      0.99
## agua5_Pozo                      0.59       0.32      0.38
## agua6_Manantial                 0.30      -0.10     -0.05
## agua7_Río                       0.37      -0.02      0.02
## agua8_Otro                      0.70       0.47      0.59
## agua9_Vecino                    0.79       0.81      0.95
##                         agua2_Red_fueraVivienda agua3_Pilón agua4_Camión
## pared1_Ladrillo                            0.99        0.91         0.99
## pared2_Piedra                              0.59        0.84         0.61
## pared3_Adobe                               0.40        0.38         0.33
## pared4_Tapia                               0.01       -0.02        -0.06
## pared5_Quincha                             0.21        0.28         0.27
## pared6_Piedra                              0.10        0.11         0.06
## pared7_Madera                              0.90        0.79         0.88
## pared8_Triplay                             0.82        0.79         0.89
## pared9_Otro                                0.21        0.28         0.23
## techo1_Concreto                            0.99        0.91         0.99
## techo2_Madera                              0.96        0.86         0.95
## techo3_Tejas                               0.19        0.11         0.10
## techo4_Planchas                            0.92        0.90         0.91
## techo5_Caña                                0.40        0.38         0.46
## techo6_Triplay                             0.81        0.76         0.88
## techo7_Paja                                0.06        0.08         0.03
## techo8_Otro                                0.22        0.29         0.23
## piso1_Parquet                              0.99        0.87         0.98
## piso2_Láminas                              0.98        0.92         0.98
## piso3_Losetas                              0.99        0.90         0.99
## piso4_Madera                               0.59        0.51         0.56
## piso5_Cemento                              0.98        0.92         0.98
## piso6_Tierra                               0.72        0.73         0.69
## piso7_Otro                                 0.85        0.77         0.86
## agua1_Red                                  0.99        0.91         0.99
## agua2_Red_fueraVivienda                    1.00        0.88         0.97
## agua3_Pilón                                0.88        1.00         0.89
## agua4_Camión                               0.97        0.89         1.00
## agua5_Pozo                                 0.39        0.40         0.34
## agua6_Manantial                            0.03        0.01        -0.07
## agua7_Río                                  0.01        0.10         0.03
## agua8_Otro                                 0.55        0.58         0.59
## agua9_Vecino                               0.93        0.86         0.94
##                         agua5_Pozo agua6_Manantial agua7_Río agua8_Otro
## pared1_Ladrillo               0.37           -0.05      0.01       0.57
## pared2_Piedra                 0.25           -0.03      0.00       0.34
## pared3_Adobe                  0.45            0.27      0.06       0.35
## pared4_Tapia                  0.02            0.24     -0.06      -0.06
## pared5_Quincha                0.07           -0.04      0.47       0.63
## pared6_Piedra                 0.24            0.39      0.10       0.09
## pared7_Madera                 0.45            0.00      0.19       0.57
## pared8_Triplay                0.29           -0.08      0.22       0.69
## pared9_Otro                   0.12           -0.02     -0.05       0.19
## techo1_Concreto               0.37           -0.05     -0.02       0.54
## techo2_Madera                 0.36           -0.05      0.00       0.52
## techo3_Tejas                  0.04            0.19     -0.10       0.02
## techo4_Planchas               0.51            0.06      0.27       0.76
## techo5_Caña                   0.15           -0.13     -0.03       0.36
## techo6_Triplay                0.26           -0.10      0.04       0.53
## techo7_Paja                   0.51            0.33      0.43       0.15
## techo8_Otro                   0.15           -0.03     -0.05       0.19
## piso1_Parquet                 0.35           -0.04     -0.03       0.50
## piso2_Láminas                 0.35           -0.05     -0.03       0.51
## piso3_Losetas                 0.35           -0.06      0.01       0.57
## piso4_Madera                  0.43           -0.01      0.35       0.59
## piso5_Cemento                 0.40           -0.05      0.02       0.59
## piso6_Tierra                  0.59            0.30      0.37       0.70
## piso7_Otro                    0.32           -0.10     -0.02       0.47
## agua1_Red                     0.38           -0.05      0.02       0.59
## agua2_Red_fueraVivienda       0.39            0.03      0.01       0.55
## agua3_Pilón                   0.40            0.01      0.10       0.58
## agua4_Camión                  0.34           -0.07      0.03       0.59
## agua5_Pozo                    1.00            0.29      0.27       0.36
## agua6_Manantial               0.29            1.00      0.31      -0.04
## agua7_Río                     0.27            0.31      1.00       0.56
## agua8_Otro                    0.36           -0.04      0.56       1.00
## agua9_Vecino                  0.42           -0.06      0.16       0.75
##                         agua9_Vecino
## pared1_Ladrillo                 0.94
## pared2_Piedra                   0.55
## pared3_Adobe                    0.41
## pared4_Tapia                   -0.03
## pared5_Quincha                  0.45
## pared6_Piedra                   0.06
## pared7_Madera                   0.86
## pared8_Triplay                  0.88
## pared9_Otro                     0.24
## techo1_Concreto                 0.93
## techo2_Madera                   0.90
## techo3_Tejas                    0.13
## techo4_Planchas                 0.96
## techo5_Caña                     0.45
## techo6_Triplay                  0.81
## techo7_Paja                     0.06
## techo8_Otro                     0.25
## piso1_Parquet                   0.91
## piso2_Láminas                   0.91
## piso3_Losetas                   0.94
## piso4_Madera                    0.59
## piso5_Cemento                   0.94
## piso6_Tierra                    0.79
## piso7_Otro                      0.81
## agua1_Red                       0.95
## agua2_Red_fueraVivienda         0.93
## agua3_Pilón                     0.86
## agua4_Camión                    0.94
## agua5_Pozo                      0.42
## agua6_Manantial                -0.06
## agua7_Río                       0.16
## agua8_Otro                      0.75
## agua9_Vecino                    1.00
library(ggcorrplot)
## Loading required package: ggplot2
ggcorrplot(corMatrix)

library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## The following object is masked from 'package:polycor':
## 
##     polyserial
psych::KMO(corMatrix) 
## Error in solve.default(r) : 
##   sistema es computacionalmente singular: número de condición recíproco = 1.75716e-18
## matrix is not invertible, image not found
## Kaiser-Meyer-Olkin factor adequacy
## Call: psych::KMO(r = corMatrix)
## Overall MSA =  0.5
## MSA for each item = 
##         pared1_Ladrillo           pared2_Piedra            pared3_Adobe 
##                     0.5                     0.5                     0.5 
##            pared4_Tapia          pared5_Quincha           pared6_Piedra 
##                     0.5                     0.5                     0.5 
##           pared7_Madera          pared8_Triplay             pared9_Otro 
##                     0.5                     0.5                     0.5 
##         techo1_Concreto           techo2_Madera            techo3_Tejas 
##                     0.5                     0.5                     0.5 
##         techo4_Planchas             techo5_Caña          techo6_Triplay 
##                     0.5                     0.5                     0.5 
##             techo7_Paja             techo8_Otro           piso1_Parquet 
##                     0.5                     0.5                     0.5 
##           piso2_Láminas           piso3_Losetas            piso4_Madera 
##                     0.5                     0.5                     0.5 
##           piso5_Cemento            piso6_Tierra              piso7_Otro 
##                     0.5                     0.5                     0.5 
##               agua1_Red agua2_Red_fueraVivienda             agua3_Pilón 
##                     0.5                     0.5                     0.5 
##            agua4_Camión              agua5_Pozo         agua6_Manantial 
##                     0.5                     0.5                     0.5 
##               agua7_Río              agua8_Otro            agua9_Vecino 
##                     0.5                     0.5                     0.5
cortest.bartlett(corMatrix,n=nrow(latentes))$p.value>0.05
## Warning in log(detR): Se han producido NaNs
## [1] NA
library(matrixcalc)

is.singular.matrix(corMatrix)
## [1] TRUE
library(GPArotation)
## 
## Attaching package: 'GPArotation'
## The following objects are masked from 'package:psych':
## 
##     equamax, varimin
resfa <- fa(latentes,
            nfactors = 4,
            cor = 'mixed',
            rotate = "varimax", #oblimin?
            fm="minres")
## In smc, smcs > 1 were set to 1.0
## In smc, smcs > 1 were set to 1.0
## In smc, smcs > 1 were set to 1.0
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
## In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
print(resfa$loadings)
## 
## Loadings:
##                         MR1    MR3    MR2    MR4   
## pared1_Ladrillo          0.977  0.191              
## pared2_Piedra            0.593  0.276              
## pared3_Adobe             0.201  0.637         0.484
## pared4_Tapia                          -0.163  0.290
## pared5_Quincha           0.178         0.632 -0.115
## pared6_Piedra                                 0.387
## pared7_Madera            0.902         0.198  0.109
## pared8_Triplay           0.823  0.156  0.374       
## pared9_Otro              0.264  0.938              
## techo1_Concreto          0.977  0.195              
## techo2_Madera            0.966                     
## techo3_Tejas             0.120        -0.169  0.371
## techo4_Planchas          0.865  0.225  0.365  0.197
## techo5_Caña              0.355  0.572  0.107 -0.204
## techo6_Triplay           0.807  0.268  0.167 -0.122
## techo7_Paja                    -0.115  0.284  0.424
## techo8_Otro              0.272  0.889              
## piso1_Parquet            0.983  0.109              
## piso2_Láminas            0.982  0.136              
## piso3_Losetas            0.976  0.188              
## piso4_Madera             0.584         0.276  0.197
## piso5_Cemento            0.967  0.235              
## piso6_Tierra             0.574  0.377  0.423  0.497
## piso7_Otro               0.837  0.236              
## agua1_Red                0.969  0.219              
## agua2_Red_fueraVivienda  0.967  0.150         0.165
## agua3_Pilón              0.859  0.294  0.138  0.122
## agua4_Camión             0.970  0.179  0.109       
## agua5_Pozo               0.305  0.164  0.250  0.529
## agua6_Manantial         -0.102                0.664
## agua7_Río                      -0.119  0.817  0.253
## agua8_Otro               0.493  0.223  0.735       
## agua9_Vecino             0.892  0.229  0.315       
## 
##                   MR1   MR3   MR2   MR4
## SS loadings    16.326 3.398 2.581 2.072
## Proportion Var  0.495 0.103 0.078 0.063
## Cumulative Var  0.495 0.598 0.676 0.739
library(GPArotation)
resfa <- fa(latentes,
            nfactors = 4,
            cor = 'mixed',
            rotate = "oblimin", #oblimin?
            fm="minres")
## In smc, smcs > 1 were set to 1.0
## In smc, smcs > 1 were set to 1.0
## In smc, smcs > 1 were set to 1.0
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
## In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
print(resfa$loadings)
## 
## Loadings:
##                         MR1    MR3    MR2    MR4   
## pared1_Ladrillo          0.997                     
## pared2_Piedra            0.561  0.192              
## pared3_Adobe                    0.613         0.502
## pared4_Tapia                   -0.130 -0.212  0.301
## pared5_Quincha                         0.672 -0.162
## pared6_Piedra                                 0.391
## pared7_Madera            0.950 -0.197  0.112       
## pared8_Triplay           0.758         0.335 -0.169
## pared9_Otro                     0.981              
## techo1_Concreto          1.005                     
## techo2_Madera            1.024                     
## techo3_Tejas             0.183        -0.243  0.379
## techo4_Planchas          0.794         0.281  0.129
## techo5_Caña              0.175  0.581  0.113 -0.214
## techo6_Triplay           0.754  0.160  0.122 -0.180
## techo7_Paja                    -0.172  0.239  0.409
## techo8_Otro                     0.926              
## piso1_Parquet            1.047        -0.110       
## piso2_Láminas            1.036        -0.104       
## piso3_Losetas            0.998                     
## piso4_Madera             0.607 -0.223  0.211  0.139
## piso5_Cemento            0.967                     
## piso6_Tierra             0.423  0.260  0.328  0.459
## piso7_Otro               0.831  0.110              
## agua1_Red                0.977                     
## agua2_Red_fueraVivienda  1.006                0.103
## agua3_Pilón              0.818  0.157              
## agua4_Camión             0.979                     
## agua5_Pozo               0.239         0.164  0.511
## agua6_Manantial         -0.107                0.679
## agua7_Río               -0.190 -0.153  0.835  0.210
## agua8_Otro               0.291  0.149  0.731       
## agua9_Vecino             0.829         0.246       
## 
##                   MR1   MR3   MR2   MR4
## SS loadings    15.921 2.934 2.362 1.979
## Proportion Var  0.482 0.089 0.072 0.060
## Cumulative Var  0.482 0.571 0.643 0.703

EJERCICIO 2

datita$elec_porcentaje <- (datita$elec1_Sí / datita$elec3_Total) * 100
str(datita$elec_porcentaje)
##  num [1:196] 67.6 82.4 87.5 18.4 85.3 ...
datita$tasa_covid <- (datita$countFallecidos / datita$countPositivos) * 1000
datita$razon_presi <- datita$Castillo / datita$Keiko

DATITA SIN LIMA

chaolima <- subset(datita, provincia != "LIMA")
dataClus=chaolima[,c(51:53)]
row.names(dataClus)=chaolima$provincia
library(cluster)
g.dist = daisy(dataClus, metric="gower")
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
fviz_nbclust(dataClus, hcut,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F,hc_func = "agnes")

set.seed(123)
library(factoextra)
library(kableExtra)

res.agnes6<- hcut(g.dist, k = 6,hc_func='agnes',hc_method = "ward.D")

dataClus$agnes=res.agnes6$cluster

# ver

head(dataClus,15)%>%kbl()%>%kable_styling()
elec_porcentaje tasa_covid razon_presi agnes
BAGUA 67.64344 56.85454 2.3796657 1
BONGARA 82.44390 185.08997 1.6076022 2
CHACHAPOYAS 87.49196 129.25483 1.4963239 2
CONDORCANQUI 18.44380 31.88739 9.0968188 3
LUYA 85.33354 192.98246 1.6079082 2
RODRÍGUEZ DE MENDOZA 77.43711 545.45455 1.4509197 2
UTCUBAMBA 80.77012 89.62390 1.9009468 2
AIJA 78.72231 329.11392 1.6454352 2
ANTONIO RAYMONDI 81.59007 574.07407 6.4162437 4
ASUNCIÓN 88.27107 355.93220 3.4582830 2
BOLOGNESI 78.83544 396.69421 1.9253881 2
CARHUAZ 79.58164 295.28986 2.1863795 2
CARLOS FERMÍN FITZCARRALD 65.49730 607.14286 3.8078963 4
CASMA 79.91896 375.90862 0.7286762 2
CORONGO 89.67901 513.51351 1.4890411 2
fviz_silhouette(res.agnes6,print.summary = F)

set.seed(123)
library(factoextra)
library(kableExtra)

res.agnes5<- hcut(g.dist, k = 5,hc_func='agnes',hc_method = "ward.D")

dataClus$agnes=res.agnes5$cluster

# ver

head(dataClus,15)%>%kbl()%>%kable_styling()
elec_porcentaje tasa_covid razon_presi agnes
BAGUA 67.64344 56.85454 2.3796657 1
BONGARA 82.44390 185.08997 1.6076022 2
CHACHAPOYAS 87.49196 129.25483 1.4963239 2
CONDORCANQUI 18.44380 31.88739 9.0968188 1
LUYA 85.33354 192.98246 1.6079082 2
RODRÍGUEZ DE MENDOZA 77.43711 545.45455 1.4509197 2
UTCUBAMBA 80.77012 89.62390 1.9009468 2
AIJA 78.72231 329.11392 1.6454352 2
ANTONIO RAYMONDI 81.59007 574.07407 6.4162437 3
ASUNCIÓN 88.27107 355.93220 3.4582830 2
BOLOGNESI 78.83544 396.69421 1.9253881 2
CARHUAZ 79.58164 295.28986 2.1863795 2
CARLOS FERMÍN FITZCARRALD 65.49730 607.14286 3.8078963 3
CASMA 79.91896 375.90862 0.7286762 2
CORONGO 89.67901 513.51351 1.4890411 2
fviz_silhouette(res.agnes5,print.summary = F)

set.seed(123)
library(factoextra)
library(kableExtra)

res.agnes7<- hcut(g.dist, k = 7,hc_func='agnes',hc_method = "ward.D")

dataClus$agnes=res.agnes7$cluster

# ver

head(dataClus,15)%>%kbl()%>%kable_styling()
elec_porcentaje tasa_covid razon_presi agnes
BAGUA 67.64344 56.85454 2.3796657 1
BONGARA 82.44390 185.08997 1.6076022 2
CHACHAPOYAS 87.49196 129.25483 1.4963239 2
CONDORCANQUI 18.44380 31.88739 9.0968188 3
LUYA 85.33354 192.98246 1.6079082 2
RODRÍGUEZ DE MENDOZA 77.43711 545.45455 1.4509197 2
UTCUBAMBA 80.77012 89.62390 1.9009468 2
AIJA 78.72231 329.11392 1.6454352 2
ANTONIO RAYMONDI 81.59007 574.07407 6.4162437 4
ASUNCIÓN 88.27107 355.93220 3.4582830 2
BOLOGNESI 78.83544 396.69421 1.9253881 2
CARHUAZ 79.58164 295.28986 2.1863795 2
CARLOS FERMÍN FITZCARRALD 65.49730 607.14286 3.8078963 4
CASMA 79.91896 375.90862 0.7286762 2
CORONGO 89.67901 513.51351 1.4890411 2
fviz_silhouette(res.agnes7,print.summary = F)

# k es la cantidad de dimensiones
proyeccion = cmdscale(g.dist, k=7,add = T) 
head(proyeccion$points,20)
##                                  [,1]        [,2]         [,3]          [,4]
## BAGUA                      0.04448855 -0.20652501 -0.035389292 -4.036798e-02
## BONGARA                   -0.11722784 -0.04094571  0.040813995 -2.995733e-02
## CHACHAPOYAS               -0.17643509 -0.04877868  0.077363900 -4.896040e-03
## CONDORCANQUI               0.38188965 -0.35157469  0.085823875 -4.121818e-02
## LUYA                      -0.14728804 -0.02528587  0.055311455 -8.100901e-03
## RODRÍGUEZ DE MENDOZA      -0.02896989  0.10352565 -0.177936906 -8.692899e-03
## UTCUBAMBA                 -0.09576217 -0.08367622  0.044949540 -7.034791e-02
## AIJA                      -0.05369621  0.02382508 -0.050771694  9.046708e-03
## ANTONIO RAYMONDI           0.09159046  0.22023335 -0.041034861 -1.265541e-01
## ASUNCIÓN                  -0.08716196  0.11179574  0.031399827 -1.330032e-02
## BOLOGNESI                 -0.04003726  0.06334762 -0.082365208 -9.350437e-03
## CARHUAZ                   -0.05121346  0.01455622 -0.016578624 -2.007227e-02
## CARLOS FERMÍN FITZCARRALD  0.15814410  0.03457577 -0.239379356 -5.494417e-02
## CASMA                     -0.08406760  0.05406885 -0.079814680  4.003301e-02
## CORONGO                   -0.15390341  0.15838208 -0.094541626  5.233849e-02
## HUARAZ                    -0.17926940 -0.02485220  0.083261148  7.925800e-03
## HUARI                      0.02275277  0.16995571 -0.099543159 -1.137150e-01
## HUARMEY                   -0.15715526 -0.05504148  0.050791649  7.641503e-06
## HUAYLAS                   -0.14885432 -0.02963135  0.037337765  1.351051e-02
## MARISCAL LUZURIAGA         0.14703244 -0.04373031 -0.009527567 -5.979777e-02
##                                   [,5]         [,6]          [,7]
## BAGUA                     -0.069067662  0.066222267  0.0610878838
## BONGARA                   -0.038962067  0.059816289 -0.0362169293
## CHACHAPOYAS                0.031576062  0.080544589  0.0157451569
## CONDORCANQUI               0.295951954  0.012385997 -0.2178514028
## LUYA                      -0.003982055  0.045767620 -0.0044569280
## RODRÍGUEZ DE MENDOZA      -0.065075161  0.034499945 -0.0809369216
## UTCUBAMBA                 -0.047393972  0.105226027 -0.0625143837
## AIJA                      -0.099791032 -0.030404772 -0.0876560442
## ANTONIO RAYMONDI           0.079098632 -0.010343827 -0.0498369237
## ASUNCIÓN                   0.040887009 -0.085274018  0.0176317994
## BOLOGNESI                 -0.087531392 -0.020164744 -0.1021441038
## CARHUAZ                   -0.088350567 -0.038773586 -0.0656456086
## CARLOS FERMÍN FITZCARRALD  0.017255252 -0.026668851  0.0857459362
## CASMA                     -0.076173791 -0.017997098 -0.1128235780
## CORONGO                    0.067796505 -0.003233012  0.0006306538
## HUARAZ                     0.042530084  0.035251909  0.0503998796
## HUARI                      0.013659473 -0.004439805 -0.0386960869
## HUARMEY                   -0.008734729  0.086360249 -0.0309169101
## HUAYLAS                   -0.020046849  0.043287332 -0.0284082210
## MARISCAL LUZURIAGA        -0.057849156 -0.115279891  0.0816366741

EJERCICIO 3

datita$ganaCastillo <- as.factor(datita$ganaCastillo)
h1=formula(ganaCastillo ~ elec_porcentaje + tasa_covid)
library(modelsummary)
## `modelsummary` 2.0.0 now uses `tinytable` as its default table-drawing
##   backend. Learn more at: https://vincentarelbundock.github.io/tinytable/
## 
## Revert to `kableExtra` for one session:
## 
##   options(modelsummary_factory_default = 'kableExtra')
## 
## Change the default backend persistently:
## 
##   config_modelsummary(factory_default = 'gt')
## 
## Silence this message forever:
## 
##   config_modelsummary(startup_message = FALSE)
## 
## Attaching package: 'modelsummary'
## The following object is masked from 'package:psych':
## 
##     SD
rcast=glm(h1, data=datita,family = binomial)
modelrl=list('GanaCastillo'=rcast)

#f <- function(x) format(x, digits = 4, scientific = FALSE)
modelsummary(modelrl,
             title = "Regresión Logística",
             stars = TRUE,
             output = "kableExtra")
Regresión Logística
GanaCastillo
(Intercept) 6.232***
(1.657)
elec_porcentaje -0.063**
(0.020)
tasa_covid 0.000
(0.001)
Num.Obs. 196
AIC 199.5
BIC 209.4
Log.Lik. -96.760
F 5.026
RMSE 0.39
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
modelrl=list('Gana Castillo (I)'=rcast)

# formato creado para modelsummary
formatoNumero = function(x) format(x, digits = 4, scientific = FALSE)
modelsummary(modelrl,
             fmt=formatoNumero, # usa función que creé antes
             exponentiate = T, # coeficientes sin logaritmo
             statistic = 'conf.int', # mostrar ICs
             title = "Regresión Logística (Coeficientes Exponenciados)",
             stars = TRUE,
             output = "kableExtra")
Regresión Logística (Coeficientes Exponenciados)
 Gana Castillo (I)
(Intercept) 508.5939***
[25.3315, 16952.582]
elec_porcentaje 0.9393**
[ 0.9011, 0.974]
tasa_covid 1.0002
[ 0.9986, 1.002]
Num.Obs. 196
AIC 199.5
BIC 209.4
Log.Lik. -96.760
F 5.026
RMSE 0.39
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
datita$aguared_porcentaje <- (datita$agua1_Red / datita$agua10_Total) * 100
h2=formula(ganaCastillo ~ elec_porcentaje + tasa_covid + aguared_porcentaje)
library(modelsummary)
rlog2=glm(h2, data=datita,family = binomial)
modelrl=list('GanaCastillo'=rlog2)

#f <- function(x) format(x, digits = 4, scientific = FALSE)
modelsummary(modelrl,
             title = "Regresión Logística",
             stars = TRUE,
             output = "kableExtra")
Regresión Logística
GanaCastillo
(Intercept) 7.226***
(1.888)
elec_porcentaje -0.088**
(0.029)
tasa_covid 0.000
(0.001)
aguared_porcentaje 0.019
(0.015)
Num.Obs. 196
AIC 200.0
BIC 213.1
Log.Lik. -95.994
F 3.681
RMSE 0.39
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
modelrl=list('Gana Castillo (II)'=rlog2)

# formato creado para modelsummary
formatoNumero = function(x) format(x, digits = 4, scientific = FALSE)
modelsummary(modelrl,
             fmt=formatoNumero, # usa función que creé antes
             exponentiate = T, # coeficientes sin logaritmo
             statistic = 'conf.int', # mostrar ICs
             title = "Regresión Logística (Coeficientes Exponenciados)",
             stars = TRUE,
             output = "kableExtra")
Regresión Logística (Coeficientes Exponenciados)
 Gana Castillo (II)
(Intercept) 1375.2427***
[44.2982, 74042.8220]
elec_porcentaje 0.9153**
[ 0.8612, 0.9672]
tasa_covid 1.0002
[ 0.9985, 1.0021]
aguared_porcentaje 1.0192
[ 0.9888, 1.0507]
Num.Obs. 196
AIC 200.0
BIC 213.1
Log.Lik. -95.994
F 3.681
RMSE 0.39
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
lrtest(rcast,rlog2) %>%
kable(caption = "Tabla LRT para comparar modelos")%>%kableExtra::kable_styling(full_width = FALSE)
Tabla LRT para comparar modelos
#Df LogLik Df Chisq Pr(>Chisq)
3 -96.75961 NA NA NA
4 -95.99378 1 1.531652 0.2158647
library(ggplot2)
dotwhisker::dwplot(list(Logit_I=rcast,Logit_II=rlog2),
                   exp=T) + #exponenciados!
            scale_y_discrete(labels=c("VI1",
                                      "VI2",
                                      "VI3")) + #si es categórica evaluar el añadir referencia 
            scale_color_discrete(name="Modelos para: VD") +
            geom_vline(xintercept = 1,
                       colour = "grey60",
                       linetype = 2)

```