x1 <- c("Dec", "Apr", "Jan", "Mar")
x2 <- c("Dec", "Apr", "Jam", "Mar")
month_levels <- c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
y1 <- factor(x1, levels = month_levels)
y1
## [1] Dec Apr Jan Mar
## Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
sort(y1)
## [1] Jan Mar Apr Dec
## Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
y2 <- factor(x2, levels = month_levels)
y2
## [1] Dec Apr <NA> Mar
## Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
# Plot
tvhours_by_relig %>%
ggplot(aes(x=avg_tvhours, y = relig)) +
geom_point()
Ordered factor levels
tvhours_by_relig %>%
ggplot(aes(x=avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point()
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
## $y
## NULL
##
## $x
## [1] "Mean Daily Hours Watching TV"
##
## attr(,"class")
## [1] "labels"
Moving a single level to the front
tvhours_by_relig %>%
ggplot(aes(x=avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point()
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
## $y
## NULL
##
## $x
## [1] "Mean Daily Hours Watching TV"
##
## attr(,"class")
## [1] "labels"
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# Rename Levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From strings
"2024-06-18" %>% ymd()
## [1] "2024-06-18"
# From numbers
20240618 %>% ymd()
## [1] "2024-06-18"
"2024-06-18 22-42-28" %>% ymd_hms()
## [1] "2024-06-18 22:42:28 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure= make_datetime(year = year, month = month,
day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2024-06-18 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2024-06-18"
date_time <- ymd_hms("2024-06-18 23:03:31")
date_time
## [1] "2024-06-18 23:03:31 UTC"
year(date_time)
## [1] 2024
month(date_time, label = TRUE, abbr = FALSE)
## [1] June
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 170
mday(date_time)
## [1] 18
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Tuesday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor_date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-09-29 19:59:00 2013-09-01 00:00:00
## 2 2013-08-31 13:52:00 2013-08-01 00:00:00
## 3 2013-09-08 06:28:00 2013-09-01 00:00:00
## 4 2013-07-30 19:53:00 2013-07-01 00:00:00
## 5 2013-10-11 07:54:00 2013-10-01 00:00:00
## 6 2013-12-01 14:58:00 2013-12-01 00:00:00
## 7 2013-07-04 10:31:00 2013-07-01 00:00:00
## 8 2013-09-12 19:17:00 2013-09-01 00:00:00
## 9 2013-10-22 19:00:00 2013-10-01 00:00:00
## 10 2013-10-08 11:57:00 2013-10-01 00:00:00
# ceiling_date for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-04-01 09:07:00 2013-05-01 00:00:00
## 2 2013-10-02 17:05:00 2013-11-01 00:00:00
## 3 2013-02-15 06:59:00 2013-03-01 00:00:00
## 4 2013-08-31 06:55:00 2013-09-01 00:00:00
## 5 2013-03-23 15:04:00 2013-04-01 00:00:00
## 6 2013-04-22 06:46:00 2013-05-01 00:00:00
## 7 2013-02-11 08:05:00 2013-03-01 00:00:00
## 8 2013-05-24 17:42:00 2013-06-01 00:00:00
## 9 2013-01-15 18:29:00 2013-02-01 00:00:00
## 10 2013-03-23 06:28:00 2013-04-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-09-16 20:38:00 2013-01-01 20:38:00
## 2 2013-01-15 20:13:00 2013-01-01 20:13:00
## 3 2013-08-01 16:33:00 2013-01-01 16:33:00
## 4 2013-02-18 12:42:00 2013-01-01 12:42:00
## 5 2013-09-16 08:59:00 2013-01-01 08:59:00
## 6 2013-05-23 08:26:00 2013-01-01 08:26:00
## 7 2013-04-15 07:47:00 2013-01-01 07:47:00
## 8 2013-05-13 05:55:00 2013-01-01 05:55:00
## 9 2013-09-03 08:34:00 2013-01-01 08:34:00
## 10 2013-09-05 08:24:00 2013-01-01 08:24:00
h_age <- today() - ymd(19791014)
h_age
## Time difference of 16319 days
as.duration(h_age)
## [1] "1409961600s (~44.68 years)"