Librerías

library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(gtsummary)
library(knitr)
library(pls)
## 
## Attaching package: 'pls'
## 
## The following object is masked from 'package:stats':
## 
##     loadings
library(leaps)
library(apaTables)
library(apa)
library (MASS)
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:gtsummary':
## 
##     select
## 
## The following object is masked from 'package:dplyr':
## 
##     select
library(readxl)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(glmnet)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## Loaded glmnet 4.1-7
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:pls':
## 
##     R2
## 
## The following object is masked from 'package:purrr':
## 
##     lift
library(rpart)
library(rpart.plot)
library(likert)
## Loading required package: xtable
## 
## Attaching package: 'likert'
## 
## The following object is masked from 'package:car':
## 
##     recode
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
library(xtable)
library(ggstatsplot)
## You can cite this package as:
##      Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
##      Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
library(psych)
## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:car':
## 
##     logit
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(nFactors)
## 
## Attaching package: 'nFactors'
## 
## The following object is masked from 'package:lattice':
## 
##     parallel
library(ggplot2)
library(rlang)
## 
## Attaching package: 'rlang'
## 
## The following objects are masked from 'package:purrr':
## 
##     %@%, flatten, flatten_chr, flatten_dbl, flatten_int, flatten_lgl,
##     flatten_raw, invoke, splice
library(dplyr)
library(purrr)
library(ggplot2)
library(skimr)

Base de datos

scu <- read_excel("scu4___change.xlsx", 
    sheet = "SCU")
head(scu)
alfa <- alpha(scu [ , -c(1:3)])
alfa
## 
## Reliability analysis   
## Call: alpha(x = scu[, -c(1:3)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.93      0.93    0.96      0.34  14 0.0057  3.6 0.92     0.32
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.93  0.94
## Duhachek  0.92  0.93  0.94
## 
##  Reliability if an item is dropped:
##                                            raw_alpha std.alpha G6(smc)
## Alumno_Soledad                                  0.93      0.93    0.95
## Alumno_Violencia                                0.93      0.93    0.95
## Alumno_Drogas                                   0.93      0.93    0.95
## Alumno_Salud mental                             0.93      0.93    0.95
## Alumno_Redes sociales                           0.93      0.93    0.95
## Alumno_Paro juvenil                             0.93      0.93    0.96
## Alumno_Acoso escolar                            0.93      0.93    0.95
## Alumno_Ciberacoso                               0.93      0.93    0.95
## Alumno_Transtornos alimnetarios                 0.93      0.93    0.95
## Alumno_Abandono escolar                         0.93      0.93    0.95
## Alumno_Presión compañeros                       0.93      0.93    0.95
## Alumno_Presión sobre rendimiento académico      0.93      0.93    0.95
## Alumno_Inteligencia Artificial                  0.93      0.93    0.96
## Otros_Cambio climático                          0.93      0.93    0.95
## Otros_Soledad                                   0.93      0.93    0.95
## Otros_Violencia                                 0.93      0.93    0.95
## Otros_Drogas                                    0.93      0.93    0.95
## Otros_Salud mental                              0.93      0.93    0.95
## Otros_Redes sociales                            0.93      0.93    0.96
## Otros_Paro juvenil                              0.93      0.93    0.95
## Otros_Acoso escolar                             0.93      0.93    0.95
## Otros_Ciberacoso                                0.93      0.93    0.95
## Otros_Transtornos alimnetarios                  0.93      0.93    0.95
## Otros_Abandono escolar                          0.93      0.93    0.95
## Otros_Presión compañeros                        0.93      0.93    0.95
## Otros_Presión sobre rendimiento académico       0.93      0.93    0.95
## Otros_Inteligencia Artificial                   0.93      0.93    0.95
##                                            average_r S/N alpha se var.r med.r
## Alumno_Soledad                                  0.35  14   0.0059 0.019  0.32
## Alumno_Violencia                                0.34  13   0.0060 0.020  0.32
## Alumno_Drogas                                   0.34  14   0.0059 0.020  0.33
## Alumno_Salud mental                             0.34  13   0.0060 0.019  0.32
## Alumno_Redes sociales                           0.34  14   0.0059 0.020  0.33
## Alumno_Paro juvenil                             0.35  14   0.0058 0.020  0.33
## Alumno_Acoso escolar                            0.34  13   0.0061 0.019  0.32
## Alumno_Ciberacoso                               0.34  13   0.0061 0.019  0.32
## Alumno_Transtornos alimnetarios                 0.34  13   0.0061 0.019  0.32
## Alumno_Abandono escolar                         0.34  13   0.0060 0.020  0.32
## Alumno_Presión compañeros                       0.34  13   0.0060 0.020  0.32
## Alumno_Presión sobre rendimiento académico      0.34  14   0.0059 0.020  0.33
## Alumno_Inteligencia Artificial                  0.35  14   0.0057 0.018  0.34
## Otros_Cambio climático                          0.34  14   0.0059 0.019  0.32
## Otros_Soledad                                   0.34  13   0.0061 0.020  0.32
## Otros_Violencia                                 0.34  13   0.0060 0.019  0.32
## Otros_Drogas                                    0.34  14   0.0059 0.020  0.32
## Otros_Salud mental                              0.34  13   0.0061 0.019  0.32
## Otros_Redes sociales                            0.35  14   0.0057 0.020  0.34
## Otros_Paro juvenil                              0.34  14   0.0059 0.019  0.33
## Otros_Acoso escolar                             0.34  13   0.0060 0.019  0.32
## Otros_Ciberacoso                                0.34  13   0.0060 0.019  0.32
## Otros_Transtornos alimnetarios                  0.34  13   0.0060 0.019  0.32
## Otros_Abandono escolar                          0.34  13   0.0060 0.019  0.32
## Otros_Presión compañeros                        0.34  13   0.0060 0.019  0.32
## Otros_Presión sobre rendimiento académico       0.34  13   0.0059 0.019  0.32
## Otros_Inteligencia Artificial                   0.35  14   0.0058 0.020  0.33
## 
##  Item statistics 
##                                              n raw.r std.r r.cor r.drop mean
## Alumno_Soledad                             286  0.53  0.53  0.51   0.48  3.7
## Alumno_Violencia                           286  0.67  0.66  0.65   0.63  4.4
## Alumno_Drogas                              286  0.56  0.55  0.54   0.51  3.8
## Alumno_Salud mental                        286  0.66  0.66  0.65   0.62  4.5
## Alumno_Redes sociales                      286  0.54  0.54  0.51   0.50  3.2
## Alumno_Paro juvenil                        286  0.49  0.49  0.46   0.44  3.6
## Alumno_Acoso escolar                       286  0.68  0.68  0.67   0.65  4.1
## Alumno_Ciberacoso                          286  0.71  0.71  0.71   0.68  3.8
## Alumno_Transtornos alimnetarios            286  0.70  0.69  0.69   0.66  3.8
## Alumno_Abandono escolar                    286  0.64  0.63  0.62   0.60  3.5
## Alumno_Presión compañeros                  286  0.65  0.64  0.63   0.61  3.5
## Alumno_Presión sobre rendimiento académico 286  0.54  0.54  0.52   0.50  3.9
## Alumno_Inteligencia Artificial             286  0.38  0.37  0.35   0.32  3.1
## Otros_Cambio climático                     286  0.58  0.59  0.57   0.54  3.8
## Otros_Soledad                              286  0.68  0.69  0.68   0.65  3.5
## Otros_Violencia                            286  0.67  0.68  0.67   0.64  3.9
## Otros_Drogas                               286  0.60  0.60  0.58   0.55  3.4
## Otros_Salud mental                         286  0.68  0.69  0.68   0.65  3.8
## Otros_Redes sociales                       286  0.44  0.44  0.40   0.38  3.4
## Otros_Paro juvenil                         286  0.55  0.55  0.54   0.50  3.1
## Otros_Acoso escolar                        286  0.68  0.68  0.68   0.64  3.7
## Otros_Ciberacoso                           286  0.66  0.66  0.65   0.62  3.4
## Otros_Transtornos alimnetarios             286  0.66  0.66  0.65   0.62  3.4
## Otros_Abandono escolar                     286  0.67  0.67  0.66   0.63  3.1
## Otros_Presión compañeros                   286  0.63  0.64  0.63   0.60  3.3
## Otros_Presión sobre rendimiento académico  286  0.60  0.60  0.59   0.56  3.4
## Otros_Inteligencia Artificial              286  0.50  0.50  0.48   0.45  2.9
##                                             sd
## Alumno_Soledad                             1.5
## Alumno_Violencia                           1.5
## Alumno_Drogas                              1.7
## Alumno_Salud mental                        1.5
## Alumno_Redes sociales                      1.5
## Alumno_Paro juvenil                        1.5
## Alumno_Acoso escolar                       1.5
## Alumno_Ciberacoso                          1.6
## Alumno_Transtornos alimnetarios            1.7
## Alumno_Abandono escolar                    1.5
## Alumno_Presión compañeros                  1.5
## Alumno_Presión sobre rendimiento académico 1.5
## Alumno_Inteligencia Artificial             1.6
## Otros_Cambio climático                     1.4
## Otros_Soledad                              1.5
## Otros_Violencia                            1.5
## Otros_Drogas                               1.6
## Otros_Salud mental                         1.5
## Otros_Redes sociales                       1.6
## Otros_Paro juvenil                         1.4
## Otros_Acoso escolar                        1.5
## Otros_Ciberacoso                           1.5
## Otros_Transtornos alimnetarios             1.5
## Otros_Abandono escolar                     1.5
## Otros_Presión compañeros                   1.4
## Otros_Presión sobre rendimiento académico  1.5
## Otros_Inteligencia Artificial              1.5
## 
## Non missing response frequency for each item
##                                               1    2    3    4    5    6 miss
## Alumno_Soledad                             0.10 0.14 0.18 0.27 0.19 0.12    0
## Alumno_Violencia                           0.06 0.07 0.12 0.22 0.24 0.30    0
## Alumno_Drogas                              0.13 0.12 0.17 0.17 0.19 0.22    0
## Alumno_Salud mental                        0.06 0.06 0.12 0.17 0.28 0.30    0
## Alumno_Redes sociales                      0.17 0.19 0.23 0.23 0.10 0.08    0
## Alumno_Paro juvenil                        0.11 0.13 0.24 0.22 0.19 0.11    0
## Alumno_Acoso escolar                       0.08 0.09 0.15 0.20 0.26 0.22    0
## Alumno_Ciberacoso                          0.12 0.12 0.13 0.21 0.27 0.15    0
## Alumno_Transtornos alimnetarios            0.15 0.12 0.15 0.17 0.19 0.22    0
## Alumno_Abandono escolar                    0.13 0.14 0.19 0.28 0.14 0.12    0
## Alumno_Presión compañeros                  0.13 0.16 0.22 0.20 0.17 0.11    0
## Alumno_Presión sobre rendimiento académico 0.07 0.11 0.17 0.23 0.27 0.14    0
## Alumno_Inteligencia Artificial             0.22 0.15 0.23 0.17 0.15 0.08    0
## Otros_Cambio climático                     0.09 0.10 0.22 0.26 0.22 0.12    0
## Otros_Soledad                              0.14 0.11 0.23 0.26 0.16 0.09    0
## Otros_Violencia                            0.08 0.09 0.20 0.24 0.23 0.14    0
## Otros_Drogas                               0.16 0.13 0.21 0.22 0.17 0.10    0
## Otros_Salud mental                         0.10 0.10 0.18 0.27 0.23 0.12    0
## Otros_Redes sociales                       0.17 0.18 0.18 0.19 0.16 0.12    0
## Otros_Paro juvenil                         0.16 0.21 0.26 0.19 0.12 0.06    0
## Otros_Acoso escolar                        0.09 0.13 0.22 0.21 0.24 0.10    0
## Otros_Ciberacoso                           0.14 0.15 0.24 0.25 0.15 0.08    0
## Otros_Transtornos alimnetarios             0.17 0.12 0.23 0.21 0.20 0.07    0
## Otros_Abandono escolar                     0.17 0.20 0.24 0.21 0.12 0.07    0
## Otros_Presión compañeros                   0.13 0.18 0.22 0.23 0.18 0.06    0
## Otros_Presión sobre rendimiento académico  0.13 0.14 0.24 0.24 0.16 0.08    0
## Otros_Inteligencia Artificial              0.27 0.18 0.22 0.16 0.10 0.06    0

Descriptivos

str(scu)
## tibble [286 × 30] (S3: tbl_df/tbl/data.frame)
##  $ Género                                    : chr [1:286] "Home" "Home" "Home" "Home" ...
##  $ Curso                                     : chr [1:286] "3r" "3r" "3r" "3r" ...
##  $ Alumno_Cambio climático                   : num [1:286] 3 4 1 6 5 5 3 1 6 5 ...
##  $ Alumno_Soledad                            : num [1:286] 3 3 1 5 6 3 2 1 2 3 ...
##  $ Alumno_Violencia                          : num [1:286] 4 4 4 5 4 6 2 1 4 4 ...
##  $ Alumno_Drogas                             : num [1:286] 3 5 3 4 3 6 2 1 6 1 ...
##  $ Alumno_Salud mental                       : num [1:286] 3 2 4 5 5 5 4 2 3 6 ...
##  $ Alumno_Redes sociales                     : num [1:286] 4 1 3 2 3 5 4 2 1 6 ...
##  $ Alumno_Paro juvenil                       : num [1:286] 5 6 1 4 1 3 4 4 2 5 ...
##  $ Alumno_Acoso escolar                      : num [1:286] 2 1 2 4 3 6 2 2 3 5 ...
##  $ Alumno_Ciberacoso                         : num [1:286] 1 1 1 4 4 6 2 1 5 5 ...
##  $ Alumno_Transtornos alimnetarios           : num [1:286] 1 1 1 4 3 5 1 1 2 6 ...
##  $ Alumno_Abandono escolar                   : num [1:286] 1 4 1 4 4 4 2 1 3 3 ...
##  $ Alumno_Presión compañeros                 : num [1:286] 1 3 1 3 4 3 1 1 3 2 ...
##  $ Alumno_Presión sobre rendimiento académico: num [1:286] 4 6 2 4 5 2 3 2 6 5 ...
##  $ Alumno_Inteligencia Artificial            : num [1:286] 1 6 1 2 6 1 5 1 3 2 ...
##  $ Otros_Cambio climático                    : num [1:286] 2 3 1 6 6 5 4 3 3 4 ...
##  $ Otros_Soledad                             : num [1:286] 2 4 1 5 6 3 2 1 3 4 ...
##  $ Otros_Violencia                           : num [1:286] 4 5 3 5 5 6 3 4 4 5 ...
##  $ Otros_Drogas                              : num [1:286] 4 3 3 4 6 6 3 1 2 2 ...
##  $ Otros_Salud mental                        : num [1:286] 3 3 3 5 5 6 1 2 2 4 ...
##  $ Otros_Redes sociales                      : num [1:286] 2 5 6 2 3 4 1 4 4 4 ...
##  $ Otros_Paro juvenil                        : num [1:286] 3 3 1 4 2 5 2 1 5 5 ...
##  $ Otros_Acoso escolar                       : num [1:286] 4 5 3 4 5 6 1 2 2 5 ...
##  $ Otros_Ciberacoso                          : num [1:286] 3 5 3 4 5 4 3 4 3 5 ...
##  $ Otros_Transtornos alimnetarios            : num [1:286] 2 2 2 4 3 5 1 3 5 6 ...
##  $ Otros_Abandono escolar                    : num [1:286] 3 2 1 4 3 6 1 1 4 4 ...
##  $ Otros_Presión compañeros                  : num [1:286] 4 6 2 3 4 5 1 1 2 5 ...
##  $ Otros_Presión sobre rendimiento académico : num [1:286] 3 4 2 4 3 6 3 1 4 5 ...
##  $ Otros_Inteligencia Artificial             : num [1:286] 2 4 1 2 6 5 2 1 2 3 ...
DT::datatable (scu) 
skim(scu)
Data summary
Name scu
Number of rows 286
Number of columns 30
_______________________
Column type frequency:
character 2
numeric 28
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Género 0 1 4 6 0 3 0
Curso 0 1 2 2 0 4 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Alumno_Cambio climático 0 1 4.34 1.34 1 4.00 5 5 6 ▂▃▆▇▅
Alumno_Soledad 0 1 3.66 1.50 1 3.00 4 5 6 ▇▆▇▆▃
Alumno_Violencia 0 1 4.40 1.48 1 4.00 5 6 6 ▃▃▆▆▇
Alumno_Drogas 0 1 3.84 1.69 1 3.00 4 5 6 ▇▆▆▆▇
Alumno_Salud mental 0 1 4.47 1.47 1 4.00 5 6 6 ▃▃▅▇▇
Alumno_Redes sociales 0 1 3.17 1.50 1 2.00 3 4 6 ▇▅▅▂▂
Alumno_Paro juvenil 0 1 3.58 1.48 1 3.00 4 5 6 ▇▇▇▆▃
Alumno_Acoso escolar 0 1 4.14 1.53 1 3.00 4 5 6 ▅▅▆▇▇
Alumno_Ciberacoso 0 1 3.83 1.60 1 3.00 4 5 6 ▇▃▆▇▅
Alumno_Transtornos alimnetarios 0 1 3.80 1.73 1 2.00 4 5 6 ▇▅▅▆▆
Alumno_Abandono escolar 0 1 3.53 1.52 1 2.00 4 5 6 ▇▅▇▃▃
Alumno_Presión compañeros 0 1 3.45 1.54 1 2.00 3 5 6 ▇▆▆▅▃
Alumno_Presión sobre rendimiento académico 0 1 3.94 1.45 1 3.00 4 5 6 ▆▅▇▇▅
Alumno_Inteligencia Artificial 0 1 3.12 1.59 1 2.00 3 4 6 ▇▅▃▃▂
Otros_Cambio climático 0 1 3.75 1.44 1 3.00 4 5 6 ▆▇▇▇▃
Otros_Soledad 0 1 3.48 1.49 1 2.25 4 5 6 ▇▇▇▅▃
Otros_Violencia 0 1 3.88 1.46 1 3.00 4 5 6 ▆▆▇▇▅
Otros_Drogas 0 1 3.39 1.56 1 2.00 3 5 6 ▇▆▆▅▂
Otros_Salud mental 0 1 3.80 1.46 1 3.00 4 5 6 ▆▅▇▇▃
Otros_Redes sociales 0 1 3.35 1.63 1 2.00 3 5 6 ▇▅▅▃▃
Otros_Paro juvenil 0 1 3.05 1.43 1 2.00 3 4 6 ▇▆▃▂▁
Otros_Acoso escolar 0 1 3.71 1.46 1 3.00 4 5 6 ▇▇▇▇▃
Otros_Ciberacoso 0 1 3.35 1.46 1 2.00 3 4 6 ▇▆▇▅▂
Otros_Transtornos alimnetarios 0 1 3.37 1.53 1 2.00 3 5 6 ▇▆▆▆▂
Otros_Abandono escolar 0 1 3.10 1.47 1 2.00 3 4 6 ▇▅▅▂▂
Otros_Presión compañeros 0 1 3.33 1.44 1 2.00 3 4 6 ▇▆▆▅▂
Otros_Presión sobre rendimiento académico 0 1 3.40 1.45 1 2.00 3 4 6 ▇▇▇▅▂
Otros_Inteligencia Artificial 0 1 2.85 1.54 1 1.00 3 4 6 ▇▅▃▂▁

Diferencias yo vs otros

scu <- read_excel("scu4___change.xlsx", 
    sheet = "SCU2")
t_apa(t_test(scu$`Cambio climático` ~ scu$Preocupación, data = scu))
## t(566.91) = 5.01, p < .001, d = 0.42
test <- t.test(scu$`Cambio climático` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Cambio climático` by scu$Preocupación
## t = 5.0147, df = 566.91, p-value = 7.115e-07
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.3552080 0.8126242
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             4.335664             3.751748
ggplot(data = scu, aes(x = scu$Preocupación, y= scu$`Cambio climático`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Cambio climático') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Cambio climático` `` is discouraged.
## ℹ Use `Cambio climático` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Cambio climático` `` is discouraged.
## ℹ Use `Cambio climático` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Cambio climático` `` is discouraged.
## ℹ Use `Cambio climático` instead.

t_apa(t_test(scu$Soledad ~scu$Preocupación, data = scu))
## t(569.99) = 1.48, p = .139, d = 0.12
test <- t.test(scu$Soledad ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$Soledad by scu$Preocupación
## t = 1.4816, df = 569.99, p-value = 0.139
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  -0.06035213  0.43098150
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.664336             3.479021
t_apa(t_test(scu$Violencia ~scu$Preocupación, data = scu))
## t(569.89) = 4.24, p < .001, d = 0.35
test <- t.test(scu$Violencia ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$Violencia by scu$Preocupación
## t = 4.2364, df = 569.89, p-value = 2.649e-05
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.2794343 0.7625238
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             4.402098             3.881119
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$Violencia)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Violencia') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Violencia` is discouraged.
## ℹ Use `Violencia` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Violencia` is discouraged.
## ℹ Use `Violencia` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Violencia` is discouraged.
## ℹ Use `Violencia` instead.

t_apa(t_test(scu$Drogas ~scu$Preocupación, data = scu))
## t(566.39) = 3.32, p < .001, d = 0.28
test <- t.test(scu$Drogas ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$Drogas by scu$Preocupación
## t = 3.3249, df = 566.39, p-value = 0.0009418
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.1845927 0.7175052
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.842657             3.391608
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$Drogas)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Drogas') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Drogas` is discouraged.
## ℹ Use `Drogas` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Drogas` is discouraged.
## ℹ Use `Drogas` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Drogas` is discouraged.
## ℹ Use `Drogas` instead.

t_apa(t_test(scu$`Salud mental` ~scu$Preocupación, data = scu))
## t(569.97) = 5.41, p < .001, d = 0.45
test <- t.test(scu$`Salud mental` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Salud mental` by scu$Preocupación
## t = 5.4107, df = 569.97, p-value = 9.256e-08
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.4231760 0.9054954
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             4.465035             3.800699
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Salud mental`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Salud mental') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Salud mental` `` is discouraged.
## ℹ Use `Salud mental` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Salud mental` `` is discouraged.
## ℹ Use `Salud mental` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Salud mental` `` is discouraged.
## ℹ Use `Salud mental` instead.

t_apa(t_test(scu$`Redes sociales` ~scu$Preocupación, data = scu))
## t(565.91) = -1.39, p = .165, d = -0.12
test <- t.test(scu$`Redes sociales` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Redes sociales` by scu$Preocupación
## t = -1.3893, df = 565.91, p-value = 0.1653
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  -0.43886095  0.07522459
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.171329             3.353147
t_apa(t_test(scu$`Paro juvenil` ~scu$Preocupación, data = scu))
## t(569.34) = 4.33, p < .001, d = 0.36
test <- t.test(scu$`Paro juvenil` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Paro juvenil` by scu$Preocupación
## t = 4.3264, df = 569.34, p-value = 1.79e-05
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.2882810 0.7676631
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.580420             3.052448
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Paro juvenil`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Paro juvenil') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Paro juvenil` `` is discouraged.
## ℹ Use `Paro juvenil` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Paro juvenil` `` is discouraged.
## ℹ Use `Paro juvenil` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Paro juvenil` `` is discouraged.
## ℹ Use `Paro juvenil` instead.

t_apa(t_test(scu$`Acoso escolar` ~scu$Preocupación, data = scu))
## t(568.90) = 3.50, p < .001, d = 0.29
test <- t.test(scu$`Acoso escolar` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Acoso escolar` by scu$Preocupación
## t = 3.5008, df = 568.9, p-value = 0.0005002
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.1918482 0.6822777
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             4.143357             3.706294
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Acoso escolar`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Acoso escolar') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Acoso escolar` `` is discouraged.
## ℹ Use `Acoso escolar` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Acoso escolar` `` is discouraged.
## ℹ Use `Acoso escolar` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Acoso escolar` `` is discouraged.
## ℹ Use `Acoso escolar` instead.

t_apa(t_test(scu$Ciberacoso ~scu$Preocupación, data = scu))
## t(565.48) = 3.72, p < .001, d = 0.31
test <- t.test(scu$Ciberacoso ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$Ciberacoso by scu$Preocupación
## t = 3.7172, df = 565.48, p-value = 0.0002215
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.2242544 0.7267946
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.828671             3.353147
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$Ciberacoso)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Ciberacoso') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Ciberacoso` is discouraged.
## ℹ Use `Ciberacoso` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Ciberacoso` is discouraged.
## ℹ Use `Ciberacoso` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `scu$Ciberacoso` is discouraged.
## ℹ Use `Ciberacoso` instead.

t_apa(t_test(scu$`Transtornos alimnetarios` ~scu$Preocupación, data = scu))
## t(561.44) = 3.18, p = .002, d = 0.27
test <- t.test(scu$`Transtornos alimnetarios` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Transtornos alimnetarios` by scu$Preocupación
## t = 3.1791, df = 561.44, p-value = 0.001559
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.1656851 0.7014478
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.800699             3.367133
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Transtornos alimnetarios`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Transtornos alimentarios') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Transtornos alimnetarios` `` is discouraged.
## ℹ Use `Transtornos alimnetarios` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Transtornos alimnetarios` `` is discouraged.
## ℹ Use `Transtornos alimnetarios` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Transtornos alimnetarios` `` is discouraged.
## ℹ Use `Transtornos alimnetarios` instead.

t_apa(t_test(scu$`Abandono escolar` ~scu$Preocupación, data = scu))
## t(569.25) = 3.44, p < .001, d = 0.29
test <- t.test(scu$`Abandono escolar` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Abandono escolar` by scu$Preocupación
## t = 3.4373, df = 569.25, p-value = 0.0006304
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.1843203 0.6758196
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.534965             3.104895
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Abandono escolar`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Abandono escolar') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Abandono escolar` `` is discouraged.
## ℹ Use `Abandono escolar` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Abandono escolar` `` is discouraged.
## ℹ Use `Abandono escolar` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Abandono escolar` `` is discouraged.
## ℹ Use `Abandono escolar` instead.

t_apa(t_test(scu$`Presión compañeros` ~scu$Preocupación, data = scu))
## t(567.43) = 0.95, p = .341, d = 0.08
test <- t.test(scu$`Presión compañeros` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Presión compañeros` by scu$Preocupación
## t = 0.95305, df = 567.43, p-value = 0.341
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  -0.1261233  0.3638855
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.451049             3.332168
t_apa(t_test(scu$`Presión sobre rendimiento académico` ~scu$Preocupación, data = scu))
## t(570.00) = 4.40, p < .001, d = 0.37
test <- t.test(scu$`Presión sobre rendimiento académico` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Presión sobre rendimiento académico` by scu$Preocupación
## t = 4.4024, df = 570, p-value = 1.279e-05
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.2962875 0.7736426
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.937063             3.402098
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Presión sobre rendimiento académico`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Presión sobre rendimiento académico') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Presión sobre rendimiento académico` `` is discouraged.
## ℹ Use `Presión sobre rendimiento académico` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Presión sobre rendimiento académico` `` is discouraged.
## ℹ Use `Presión sobre rendimiento académico` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Presión sobre rendimiento académico` `` is discouraged.
## ℹ Use `Presión sobre rendimiento académico` instead.

t_apa(t_test(scu$`Inteligencia Artificial` ~scu$Preocupación, data = scu))
## t(569.38) = 2.03, p = .043, d = 0.17
test <- t.test(scu$`Inteligencia Artificial` ~scu$Preocupación, data = scu)
print(test)
## 
##  Welch Two Sample t-test
## 
## data:  scu$`Inteligencia Artificial` by scu$Preocupación
## t = 2.0263, df = 569.38, p-value = 0.0432
## alternative hypothesis: true difference in means between group Alumno and group Otros is not equal to 0
## 95 percent confidence interval:
##  0.00815654 0.52331199
## sample estimates:
## mean in group Alumno  mean in group Otros 
##             3.118881             2.853147
ggplot(data = scu, aes(x = scu$Preocupación, y = scu$`Inteligencia Artificial`)) + 
  geom_jitter(size = 1, color = 'gray', alpha = 0.5) +
  geom_violin(aes(fill =Preocupación), color = 'black', alpha = 0.8) +
  geom_boxplot(color = 'black', alpha = 0.7) + 
  xlab('Preocupación') + 
  ylab('Inteligencia artificial') + 
  theme_minimal()
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Inteligencia Artificial` `` is discouraged.
## ℹ Use `Inteligencia Artificial` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Inteligencia Artificial` `` is discouraged.
## ℹ Use `Inteligencia Artificial` instead.
## Warning: Use of `scu$Preocupación` is discouraged.
## ℹ Use `Preocupación` instead.
## Warning: Use of `` scu$`Inteligencia Artificial` `` is discouraged.
## ℹ Use `Inteligencia Artificial` instead.

Correlaciones

scu <- read_excel("scu4___change.xlsx", 
    sheet = "SCU")
corre <- scu [, -c(1:3)] 

apa.cor.table(corre, show.conf.interval = TRUE,
  show.sig.stars = TRUE,landscape = TRUE)
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                                       M    SD   1          
##   1. Alumno_Soledad                              3.66 1.50            
##                                                                       
##   2. Alumno_Violencia                            4.40 1.48 .49**      
##                                                            [.40, .57] 
##                                                                       
##   3. Alumno_Drogas                               3.84 1.69 .40**      
##                                                            [.30, .50] 
##                                                                       
##   4. Alumno_Salud mental                         4.47 1.47 .54**      
##                                                            [.45, .62] 
##                                                                       
##   5. Alumno_Redes sociales                       3.17 1.50 .37**      
##                                                            [.27, .47] 
##                                                                       
##   6. Alumno_Paro juvenil                         3.58 1.48 .36**      
##                                                            [.25, .45] 
##                                                                       
##   7. Alumno_Acoso escolar                        4.14 1.53 .45**      
##                                                            [.35, .54] 
##                                                                       
##   8. Alumno_Ciberacoso                           3.83 1.60 .48**      
##                                                            [.38, .56] 
##                                                                       
##   9. Alumno_Transtornos alimnetarios             3.80 1.73 .46**      
##                                                            [.36, .54] 
##                                                                       
##   10. Alumno_Abandono escolar                    3.53 1.52 .37**      
##                                                            [.27, .47] 
##                                                                       
##   11. Alumno_Presión compañeros                  3.45 1.54 .42**      
##                                                            [.32, .51] 
##                                                                       
##   12. Alumno_Presión sobre rendimiento académico 3.94 1.45 .41**      
##                                                            [.31, .50] 
##                                                                       
##   13. Alumno_Inteligencia Artificial             3.12 1.59 .22**      
##                                                            [.10, .32] 
##                                                                       
##   14. Otros_Cambio climático                     3.75 1.44 .19**      
##                                                            [.08, .30] 
##                                                                       
##   15. Otros_Soledad                              3.48 1.49 .45**      
##                                                            [.35, .53] 
##                                                                       
##   16. Otros_Violencia                            3.88 1.46 .20**      
##                                                            [.08, .31] 
##                                                                       
##   17. Otros_Drogas                               3.39 1.56 .18**      
##                                                            [.06, .29] 
##                                                                       
##   18. Otros_Salud mental                         3.80 1.46 .27**      
##                                                            [.16, .37] 
##                                                                       
##   19. Otros_Redes sociales                       3.35 1.63 .21**      
##                                                            [.09, .31] 
##                                                                       
##   20. Otros_Paro juvenil                         3.05 1.43 .10        
##                                                            [-.01, .21]
##                                                                       
##   21. Otros_Acoso escolar                        3.71 1.46 .18**      
##                                                            [.07, .29] 
##                                                                       
##   22. Otros_Ciberacoso                           3.35 1.46 .19**      
##                                                            [.08, .30] 
##                                                                       
##   23. Otros_Transtornos alimnetarios             3.37 1.53 .21**      
##                                                            [.09, .31] 
##                                                                       
##   24. Otros_Abandono escolar                     3.10 1.47 .12*       
##                                                            [.00, .23] 
##                                                                       
##   25. Otros_Presión compañeros                   3.33 1.44 .17**      
##                                                            [.06, .28] 
##                                                                       
##   26. Otros_Presión sobre rendimiento académico  3.40 1.45 .08        
##                                                            [-.03, .20]
##                                                                       
##   27. Otros_Inteligencia Artificial              2.85 1.54 .08        
##                                                            [-.03, .20]
##                                                                       
##   2          3          4          5          6           7          8         
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##   .56**                                                                        
##   [.48, .64]                                                                   
##                                                                                
##   .54**      .45**                                                             
##   [.45, .62] [.35, .54]                                                        
##                                                                                
##   .33**      .25**      .41**                                                  
##   [.22, .43] [.14, .35] [.31, .50]                                             
##                                                                                
##   .34**      .25**      .42**      .35**                                       
##   [.24, .44] [.14, .35] [.32, .51] [.24, .44]                                  
##                                                                                
##   .56**      .45**      .51**      .41**      .34**                            
##   [.48, .64] [.35, .54] [.42, .59] [.31, .51] [.23, .44]                       
##                                                                                
##   .60**      .45**      .54**      .44**      .36**       .82**                
##   [.52, .67] [.35, .54] [.46, .62] [.34, .53] [.25, .46]  [.77, .85]           
##                                                                                
##   .61**      .42**      .65**      .40**      .41**       .69**      .67**     
##   [.53, .68] [.32, .51] [.58, .71] [.30, .49] [.31, .50]  [.62, .74] [.60, .73]
##                                                                                
##   .48**      .40**      .48**      .30**      .43**       .50**      .58**     
##   [.38, .56] [.30, .50] [.39, .56] [.19, .40] [.33, .52]  [.41, .58] [.50, .65]
##                                                                                
##   .49**      .43**      .50**      .42**      .32**       .54**      .55**     
##   [.39, .57] [.33, .52] [.40, .58] [.32, .51] [.21, .42]  [.45, .62] [.47, .63]
##                                                                                
##   .43**      .36**      .42**      .26**      .40**       .44**      .44**     
##   [.33, .52] [.25, .45] [.32, .52] [.14, .36] [.30, .50]  [.34, .53] [.35, .53]
##                                                                                
##   .25**      .22**      .26**      .26**      .18**       .18**      .25**     
##   [.14, .35] [.10, .32] [.15, .37] [.15, .37] [.07, .29]  [.06, .29] [.14, .36]
##                                                                                
##   .26**      .17**      .26**      .26**      .22**       .22**      .22**     
##   [.15, .36] [.06, .28] [.14, .36] [.15, .36] [.11, .33]  [.11, .33] [.11, .33]
##                                                                                
##   .33**      .25**      .40**      .31**      .19**       .32**      .36**     
##   [.23, .43] [.14, .36] [.30, .49] [.21, .42] [.08, .30]  [.21, .42] [.25, .46]
##                                                                                
##   .45**      .27**      .29**      .27**      .17**       .37**      .41**     
##   [.35, .54] [.16, .37] [.18, .40] [.16, .38] [.05, .28]  [.26, .46] [.31, .50]
##                                                                                
##   .36**      .48**      .22**      .19**      .09         .33**      .32**     
##   [.26, .46] [.39, .57] [.11, .33] [.08, .30] [-.03, .20] [.22, .43] [.21, .42]
##                                                                                
##   .38**      .29**      .42**      .26**      .21**       .36**      .38**     
##   [.28, .48] [.18, .39] [.32, .51] [.15, .37] [.09, .32]  [.25, .45] [.28, .48]
##                                                                                
##   .18**      .16**      .15*       .35**      .18**       .16**      .20**     
##   [.07, .29] [.05, .27] [.03, .26] [.24, .45] [.07, .29]  [.05, .27] [.09, .31]
##                                                                                
##   .26**      .14*       .22**      .18**      .33**       .19**      .24**     
##   [.15, .37] [.03, .25] [.11, .33] [.06, .29] [.22, .43]  [.08, .30] [.12, .34]
##                                                                                
##   .30**      .30**      .31**      .30**      .20**       .41**      .39**     
##   [.19, .40] [.19, .40] [.20, .41] [.19, .40] [.08, .31]  [.31, .50] [.29, .48]
##                                                                                
##   .30**      .24**      .32**      .27**      .21**       .35**      .44**     
##   [.19, .40] [.13, .35] [.21, .42] [.16, .38] [.10, .32]  [.24, .45] [.34, .53]
##                                                                                
##   .33**      .23**      .40**      .28**      .22**       .37**      .38**     
##   [.23, .43] [.11, .33] [.30, .49] [.17, .39] [.11, .33]  [.27, .47] [.27, .47]
##                                                                                
##   .28**      .27**      .26**      .29**      .22**       .36**      .39**     
##   [.17, .39] [.16, .37] [.14, .36] [.18, .39] [.10, .32]  [.26, .46] [.29, .48]
##                                                                                
##   .28**      .25**      .30**      .24**      .23**       .27**      .23**     
##   [.17, .38] [.13, .35] [.19, .40] [.13, .35] [.12, .34]  [.16, .38] [.12, .34]
##                                                                                
##   .24**      .23**      .26**      .19**      .21**       .27**      .23**     
##   [.13, .35] [.11, .33] [.15, .37] [.08, .30] [.10, .32]  [.16, .37] [.11, .33]
##                                                                                
##   .22**      .15*       .19**      .22**      .13*        .17**      .19**     
##   [.11, .33] [.03, .26] [.08, .30] [.10, .33] [.01, .24]  [.06, .28] [.07, .30]
##                                                                                
##   9          10         11         12         13          14         15        
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##   .58**                                                                        
##   [.49, .65]                                                                   
##                                                                                
##   .61**      .57**                                                             
##   [.53, .68] [.48, .64]                                                        
##                                                                                
##   .46**      .46**      .54**                                                  
##   [.37, .55] [.36, .54] [.45, .62]                                             
##                                                                                
##   .21**      .32**      .33**      .25**                                       
##   [.10, .32] [.21, .42] [.22, .43] [.14, .36]                                  
##                                                                                
##   .22**      .20**      .21**      .15*       .21**                            
##   [.10, .32] [.08, .31] [.10, .32] [.03, .26] [.09, .32]                       
##                                                                                
##   .35**      .32**      .34**      .24**      .19**       .58**                
##   [.25, .45] [.21, .42] [.23, .44] [.13, .34] [.07, .29]  [.50, .65]           
##                                                                                
##   .31**      .29**      .25**      .23**      .07         .56**      .54**     
##   [.20, .41] [.18, .40] [.14, .36] [.12, .34] [-.04, .19] [.47, .63] [.46, .62]
##                                                                                
##   .26**      .26**      .24**      .23**      .13*        .40**      .44**     
##   [.15, .36] [.14, .36] [.13, .35] [.11, .33] [.02, .24]  [.30, .49] [.34, .52]
##                                                                                
##   .34**      .24**      .28**      .22**      .10         .54**      .56**     
##   [.24, .44] [.13, .35] [.17, .38] [.11, .33] [-.02, .21] [.45, .62] [.47, .63]
##                                                                                
##   .13*       .24**      .21**      .17**      .28**       .27**      .28**     
##   [.02, .24] [.13, .35] [.09, .32] [.06, .28] [.17, .38]  [.16, .37] [.17, .39]
##                                                                                
##   .30**      .25**      .22**      .24**      .05         .41**      .43**     
##   [.19, .40] [.14, .36] [.10, .33] [.13, .35] [-.07, .16] [.31, .51] [.33, .52]
##                                                                                
##   .36**      .36**      .27**      .21**      .10         .43**      .51**     
##   [.25, .45] [.25, .46] [.16, .38] [.09, .32] [-.01, .22] [.33, .52] [.42, .59]
##                                                                                
##   .32**      .32**      .27**      .19**      .15*        .44**      .47**     
##   [.21, .42] [.22, .42] [.15, .37] [.08, .30] [.04, .26]  [.34, .53] [.37, .55]
##                                                                                
##   .53**      .33**      .33**      .17**      .06         .38**      .49**     
##   [.45, .61] [.22, .43] [.22, .43] [.06, .28] [-.06, .18] [.28, .48] [.40, .58]
##                                                                                
##   .34**      .39**      .34**      .18**      .10         .45**      .51**     
##   [.24, .44] [.29, .48] [.23, .43] [.06, .29] [-.01, .22] [.35, .54] [.42, .59]
##                                                                                
##   .27**      .24**      .33**      .27**      .11         .46**      .53**     
##   [.16, .38] [.13, .35] [.22, .43] [.16, .37] [-.00, .23] [.36, .55] [.44, .61]
##                                                                                
##   .24**      .21**      .27**      .28**      .16**       .49**      .49**     
##   [.13, .35] [.09, .32] [.16, .38] [.17, .38] [.05, .28]  [.39, .57] [.39, .57]
##                                                                                
##   .20**      .22**      .23**      .13*       .47**       .39**      .34**     
##   [.08, .30] [.11, .33] [.12, .34] [.01, .24] [.37, .56]  [.29, .48] [.23, .44]
##                                                                                
##   16         17         18         19         20         21         22        
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##   .62**                                                                       
##   [.54, .68]                                                                  
##                                                                               
##   .63**      .54**                                                            
##   [.55, .69] [.46, .62]                                                       
##                                                                               
##   .29**      .27**      .32**                                                 
##   [.18, .39] [.16, .38] [.21, .42]                                            
##                                                                               
##   .40**      .28**      .46**      .20**                                      
##   [.30, .49] [.16, .38] [.37, .55] [.09, .31]                                 
##                                                                               
##   .61**      .44**      .56**      .23**      .47**                           
##   [.53, .67] [.34, .53] [.47, .63] [.11, .33] [.37, .56]                      
##                                                                               
##   .58**      .44**      .56**      .22**      .45**      .71**                
##   [.50, .65] [.34, .53] [.48, .64] [.11, .33] [.36, .54] [.65, .76]           
##                                                                               
##   .51**      .35**      .56**      .21**      .46**      .55**      .57**     
##   [.42, .59] [.24, .45] [.47, .63] [.09, .32] [.36, .54] [.47, .63] [.48, .64]
##                                                                               
##   .47**      .45**      .49**      .22**      .56**      .61**      .56**     
##   [.38, .56] [.35, .54] [.39, .57] [.11, .33] [.48, .64] [.54, .68] [.48, .64]
##                                                                               
##   .45**      .42**      .47**      .28**      .46**      .53**      .47**     
##   [.36, .54] [.32, .51] [.37, .56] [.17, .39] [.37, .55] [.44, .61] [.38, .56]
##                                                                               
##   .45**      .42**      .47**      .27**      .46**      .50**      .46**     
##   [.36, .54] [.32, .51] [.38, .56] [.16, .37] [.36, .55] [.41, .58] [.37, .55]
##                                                                               
##   .35**      .40**      .31**      .43**      .29**      .29**      .32**     
##   [.24, .45] [.29, .49] [.20, .41] [.33, .52] [.18, .39] [.18, .40] [.21, .42]
##                                                                               
##   23         24         25         26        
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##   .57**                                      
##   [.49, .65]                                 
##                                              
##   .49**      .60**                           
##   [.39, .57] [.52, .67]                      
##                                              
##   .42**      .53**      .69**                
##   [.32, .51] [.45, .61] [.62, .75]           
##                                              
##   .32**      .37**      .39**      .34**     
##   [.21, .42] [.26, .47] [.29, .49] [.24, .44]
##                                              
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Diferencias por cursos

anova <- aov(scu$`Alumno_Cambio climático` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    6.8   2.281   1.274  0.283
## Residuals   282  504.9   1.790
anova <- aov(scu$Alumno_Soledad ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    8.4   2.792   1.247  0.293
## Residuals   282  631.4   2.239
anova <- aov(scu$Alumno_Violencia ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    2.7  0.8969   0.407  0.748
## Residuals   282  622.1  2.2059
anova <- aov(scu$Alumno_Drogas ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3   12.7   4.232   1.497  0.216
## Residuals   282  797.2   2.827
anova <- aov(scu$`Alumno_Salud mental` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3   13.1   4.379   2.038  0.109
## Residuals   282  606.0   2.149
anova <- aov(scu$`Alumno_Redes sociales` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   17.3   5.757   2.613 0.0516 .
## Residuals   282  621.3   2.203                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$`Alumno_Paro juvenil` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   14.4   4.787   2.201 0.0882 .
## Residuals   282  613.3   2.175                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$`Alumno_Acoso escolar` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    4.3   1.425    0.61  0.609
## Residuals   282  658.8   2.336
anova <- aov(scu$`Alumno_Transtornos alimnetarios` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    2.0  0.6828   0.227  0.878
## Residuals   282  849.6  3.0127
anova <- aov(scu$`Alumno_Abandono escolar` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    7.6   2.527   1.091  0.353
## Residuals   282  653.6   2.318
anova <- aov(scu$`Alumno_Presión compañeros` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    2.0   0.652   0.272  0.845
## Residuals   282  674.9   2.393
anova <- aov(scu$`Alumno_Presión sobre rendimiento académico` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    3.9   1.312   0.618  0.604
## Residuals   282  598.9   2.124
anova <- aov(scu$`Alumno_Inteligencia Artificial` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    3.8   1.273   0.498  0.684
## Residuals   282  720.1   2.554
anova <- aov(scu$`Otros_Cambio climático` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   17.9   5.963   2.922 0.0344 *
## Residuals   282  575.5   2.041                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$Otros_Soledad ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   14.9   4.962   2.255 0.0822 .
## Residuals   282  620.5   2.200                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$Otros_Violencia ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    2.0  0.6749   0.314  0.815
## Residuals   282  605.9  2.1487
anova <- aov(scu$Otros_Drogas ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   20.0   6.680   2.811 0.0398 *
## Residuals   282  670.1   2.376                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$`Otros_Salud mental` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    0.7  0.2369    0.11  0.954
## Residuals   282  608.9  2.1593
anova <- aov(scu$`Otros_Redes sociales` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   16.8   5.615   2.138 0.0956 .
## Residuals   282  740.5   2.626                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$`Otros_Paro juvenil` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   16.1   5.355   2.649 0.0492 *
## Residuals   282  570.1   2.022                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$`Otros_Acoso escolar` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    7.8   2.588   1.217  0.304
## Residuals   282  599.6   2.126
anova <- aov(scu$Otros_Ciberacoso ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    8.0   2.664   1.253  0.291
## Residuals   282  599.3   2.125
anova <- aov(scu$`Otros_Transtornos alimnetarios` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    8.6   2.870   1.234  0.298
## Residuals   282  655.8   2.326
anova <- aov(scu$`Otros_Abandono escolar` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## scu$Curso     3   15.5   5.171   2.433 0.0652 .
## Residuals   282  599.3   2.125                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova <- aov(scu$`Otros_Presión compañeros` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    4.5   1.485   0.714  0.545
## Residuals   282  587.0   2.082
anova <- aov(scu$`Otros_Inteligencia Artificial` ~ scu$Curso)
summary(anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## scu$Curso     3    9.1   3.022   1.274  0.283
## Residuals   282  668.8   2.372