Detect matches
winners$Nationality
## [1] "United States" "Norway" "United Kingdom" "United Kingdom"
## [5] "United Kingdom" "United Kingdom" "Japan" "Japan"
## [9] "Denmark" "Kenya" "United Kingdom" "Soviet Union"
## [13] "Portugal" "United Kingdom" "Mexico" "Mexico"
## [17] "Mexico" "Portugal" "Spain" "Morocco"
## [21] "Portugal" "Morocco" "United States" "Ethiopia"
## [25] "Kenya" "Kenya" "Kenya" "Kenya"
## [29] "Kenya" "Kenya" "Ethiopia" "Kenya"
## [33] "Kenya" "Ethiopia" "Kenya" "Kenya"
## [37] "Kenya" "Kenya" "Kenya" "Kenya"
## [41] "Ethiopia" "Ethiopia" "Kenya" "United Kingdom"
## [45] "United Kingdom" "Norway" "Norway" "Norway"
## [49] "Norway" "Norway" "Norway" "United Kingdom"
## [53] "Poland" "Portugal" "Germany" "Germany"
## [57] "Germany" "Poland" "United Kingdom" "Kenya"
## [61] "Ireland" "Kenya" "Kenya" "Ethiopia"
## [65] "United Kingdom" "United Kingdom" "Kenya" "United Kingdom"
## [69] "United States" "China" "Germany" "Germany"
## [73] "Ethiopia" "Kenya" "Kenya" "Kenya"
## [77] "Kenya" "Ethiopia" "Kenya" "Kenya"
## [81] "Kenya" "Kenya" "Kenya" "Kenya"
## [85] "Ethiopia" "United Kingdom" "Ireland" "United Kingdom"
## [89] "Ireland" "United Kingdom" "Canada" "United Kingdom"
## [93] "Sweden" "France" "Canada" "Belgium"
## [97] "United Kingdom" "Switzerland" "United Kingdom" "United Kingdom"
## [101] "Switzerland" "Switzerland" "United Kingdom" "France"
## [105] "United Kingdom" "France" "Mexico" "Mexico"
## [109] "United Kingdom" "United Kingdom" "United Kingdom" "Australia"
## [113] "Canada" "United Kingdom" "United Kingdom" "Australia"
## [117] "Switzerland" "United States" "Switzerland" "United Kingdom"
## [121] "United Kingdom" "United States" "Canada" "Switzerland"
## [125] "United Kingdom" "Ireland" "Ireland" "Ireland"
## [129] "United Kingdom" "United Kingdom" "United Kingdom" "Denmark"
## [133] "Denmark" "United Kingdom" "United Kingdom" "United Kingdom"
## [137] "United Kingdom" "United Kingdom" "Sweden" "United Kingdom"
## [141] "Sweden" "United Kingdom" "United Kingdom" "United Kingdom"
## [145] "Italy" "Italy" "Italy" "Italy"
## [149] "United Kingdom" "Switzerland" "United States" "Japan"
## [153] "United States" "United Kingdom" "United States" "United States"
## [157] "United States" "United States" "Switzerland" "Australia"
## [161] "Switzerland" "Netherlands" "Switzerland"
str_detect(winners$Nationality, "United States")
## [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [121] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
## [157] TRUE TRUE FALSE FALSE FALSE FALSE FALSE
sum(str_detect(winners$Nationality, "United States"))
## [1] 11
winners %>%
summarise(num_United_States = sum(str_detect(Nationality, "United States")))
## # A tibble: 1 × 1
## num_United_States
## <int>
## 1 11
winners$Athlete
## [1] "Dick Beardsley (Tie)" "Inge Simonsen (Tie)"
## [3] "Hugh Jones" "Mike Gratton"
## [5] "Charlie Spedding" "Steve Jones"
## [7] "Toshihiko Seko" "Hiromi Taniguchi"
## [9] "Henrik Jørgensen" "Douglas Wakiihuri"
## [11] "Allister Hutton" "Yakov Tolstikov"
## [13] "António Pinto" "Eamonn Martin"
## [15] "Dionicio Cerón" "Dionicio Cerón"
## [17] "Dionicio Cerón" "António Pinto"
## [19] "Abel Antón" "Abdelkader El Mouaziz"
## [21] "António Pinto" "Abdelkader El Mouaziz"
## [23] "Khalid Khannouchi" "Gezahegne Abera"
## [25] "Evans Rutto" "Martin Lel"
## [27] "Felix Limo" "Martin Lel"
## [29] "Martin Lel" "Samuel Wanjiru"
## [31] "Tsegaye Kebede" "Emmanuel Kipchirchir Mutai"
## [33] "Wilson Kipsang Kiprotich" "Tsegaye Kebede"
## [35] "Wilson Kipsang Kiprotich" "Eliud Kipchoge"
## [37] "Eliud Kipchoge" "Daniel Wanjiru"
## [39] "Eliud Kipchoge" "Eliud Kipchoge"
## [41] "Shura Kitata Tola" "Sisay Lemma"
## [43] "Amos Kipruto" "Joyce Smith"
## [45] "Joyce Smith" "Grete Waitz"
## [47] "Ingrid Kristiansen" "Ingrid Kristiansen"
## [49] "Grete Waitz" "Ingrid Kristiansen"
## [51] "Ingrid Kristiansen" "Véronique Marot"
## [53] "Wanda Panfil" "Rosa Mota"
## [55] "Katrin Dörre-Heinig" "Katrin Dörre-Heinig"
## [57] "Katrin Dörre-Heinig" "Małgorzata Sobańska"
## [59] "Liz McColgan" "Joyce Chepchumba"
## [61] "Catherina McKiernan" "Joyce Chepchumba"
## [63] "Tegla Loroupe" "Derartu Tulu"
## [65] "Paula Radcliffe" "Paula Radcliffe"
## [67] "Margaret Okayo" "Paula Radcliffe"
## [69] "Deena Kastor" "Zhou Chunxiu"
## [71] "Irina Mikitenko" "Irina Mikitenko"
## [73] "Aselefech Mergia" "Mary Jepkosgei Keitany"
## [75] "Mary Jepkosgei Keitany" "Priscah Jeptoo"
## [77] "Edna Kiplagat" "Tigist Tufa"
## [79] "Jemima Sumgong" "Mary Jepkosgei Keitany"
## [81] "Vivian Cheruiyot" "Brigid Kosgei"
## [83] "Brigid Kosgei" "Joyciline Jepkosgei"
## [85] "Yalemzerf Yehualaw" "Gordon Perry"
## [87] "Kevin Breen" "Chris Hallam"
## [89] "Gerry O'Rourke" "Chris Hallam"
## [91] "Ted Vince" "David Holding"
## [93] "Håkan Ericsson" "Farid Amarouche"
## [95] "Daniel Wesley" "George Vandamme"
## [97] "David Holding" "Heinz Frei"
## [99] "David Holding" "David Holding"
## [101] "Heinz Frei" "Heinz Frei"
## [103] "Kevin Papworth" "Denis Lemeunier"
## [105] "David Weir" "Joël Jeannot"
## [107] "Saúl Mendoza" "Saúl Mendoza"
## [109] "David Weir" "David Weir"
## [111] "David Weir" "Kurt Fearnley"
## [113] "Josh Cassidy" "David Weir"
## [115] "David Weir" "Kurt Fearnley"
## [117] "Marcel Hug" "Josh George"
## [119] "Marcel Hug" "David Weir"
## [121] "David Weir" "Daniel Romanchuk"
## [123] "Brent Lakatos" "Marcel Hug"
## [125] "Denise Smith" "Kay McShane"
## [127] "Kay McShane" "Kay McShane"
## [129] "Karen Davidson" "Karen Davidson"
## [131] "Josie Cichockyj" "Connie Hansen"
## [133] "Connie Hansen" "Tanni Grey-Thompson"
## [135] "Rose Hill" "Tanni Grey-Thompson"
## [137] "Rose Hill" "Tanni Grey-Thompson"
## [139] "Monica Wetterström" "Tanni Grey-Thompson"
## [141] "Monica Wetterström" "Sarah Piercy"
## [143] "Tanni Grey-Thompson" "Tanni Grey-Thompson"
## [145] "Francesca Porcellato" "Francesca Porcellato"
## [147] "Francesca Porcellato" "Francesca Porcellato"
## [149] "Shelly Woods" "Sandra Graf"
## [151] "Amanda McGrory" "Wakako Tsuchida"
## [153] "Amanda McGrory" "Shelly Woods"
## [155] "Tatyana McFadden" "Tatyana McFadden"
## [157] "Tatyana McFadden" "Tatyana McFadden"
## [159] "Manuela Schär" "Madison de Rozario"
## [161] "Manuela Schär" "Nikita den Boer"
## [163] "Manuela Schär"
str_detect(winners$Athlete, "Mar")
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
## [121] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE
sum(str_detect(winners$Athlete, "Mar"))
## [1] 12
winners %>%
summarise(num_Mar = sum(str_detect(Athlete, "Mar")))
## # A tibble: 1 × 1
## num_Mar
## <int>
## 1 12
Replacing matches
winners %>%
mutate(col_UK = str_replace(Nationality, "United States", "United Kingdom"))
## # A tibble: 163 × 6
## Category Year Athlete Nationality Time col_UK
## <chr> <dbl> <chr> <chr> <time> <chr>
## 1 Men 1981 Dick Beardsley (Tie) United States 02:11:48 United Kingdom
## 2 Men 1981 Inge Simonsen (Tie) Norway 02:11:48 Norway
## 3 Men 1982 Hugh Jones United Kingdom 02:09:24 United Kingdom
## 4 Men 1983 Mike Gratton United Kingdom 02:09:43 United Kingdom
## 5 Men 1984 Charlie Spedding United Kingdom 02:09:57 United Kingdom
## 6 Men 1985 Steve Jones United Kingdom 02:08:16 United Kingdom
## 7 Men 1986 Toshihiko Seko Japan 02:10:02 Japan
## 8 Men 1987 Hiromi Taniguchi Japan 02:09:50 Japan
## 9 Men 1988 Henrik Jørgensen Denmark 02:10:20 Denmark
## 10 Men 1989 Douglas Wakiihuri Kenya 02:09:03 Kenya
## # ℹ 153 more rows
winners %>%
mutate(col_Sma = str_replace(Athlete, "Mar", "Sma"))
## # A tibble: 163 × 6
## Category Year Athlete Nationality Time col_Sma
## <chr> <dbl> <chr> <chr> <time> <chr>
## 1 Men 1981 Dick Beardsley (Tie) United States 02:11:48 Dick Beardsley (…
## 2 Men 1981 Inge Simonsen (Tie) Norway 02:11:48 Inge Simonsen (T…
## 3 Men 1982 Hugh Jones United Kingdom 02:09:24 Hugh Jones
## 4 Men 1983 Mike Gratton United Kingdom 02:09:43 Mike Gratton
## 5 Men 1984 Charlie Spedding United Kingdom 02:09:57 Charlie Spedding
## 6 Men 1985 Steve Jones United Kingdom 02:08:16 Steve Jones
## 7 Men 1986 Toshihiko Seko Japan 02:10:02 Toshihiko Seko
## 8 Men 1987 Hiromi Taniguchi Japan 02:09:50 Hiromi Taniguchi
## 9 Men 1988 Henrik Jørgensen Denmark 02:10:20 Henrik Jørgensen
## 10 Men 1989 Douglas Wakiihuri Kenya 02:09:03 Douglas Wakiihuri
## # ℹ 153 more rows