Heath and Economic Impacy of Severe Weather Events - NOAA Storm Database Analysis

Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database, which tracks characteristics of major storms and weather events in the United States, to answer the following questions: 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health? and 2. which types of events have the greatest economic consequences?

Data Processing

Step 1. Load the data

if (!file.exists("StormData.csv.bz2")) {
    fileURL <- 'https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2'
    download.file(fileURL, destfile='StormData.csv.bz2', method = 'curl')
}

storm <- read.csv(bzfile('StormData.csv.bz2'),header=TRUE, stringsAsFactors = FALSE)

Step 2. See what the data look like

##explore data
head(storm)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

Step 3. Subset to most useful columns to identify population health impact and aggregate accross those columns to get the total number of fatalities and injuries for each event type across all locations for years.

storm_event <- subset(storm, select=c(EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP))

##aggregate number of fatalities by event type, rename columns and view new dataset
event_fats <- aggregate(storm_event$FATALITIES, by=list(storm_event$EVTYPE), FUN=sum)
colnames(event_fats) <- c("EVTYPE","FATALITIES")
head(event_fats)
##                  EVTYPE FATALITIES
## 1    HIGH SURF ADVISORY          0
## 2         COASTAL FLOOD          0
## 3           FLASH FLOOD          0
## 4             LIGHTNING          0
## 5             TSTM WIND          0
## 6       TSTM WIND (G45)          0
### do the same for injuries by event type
event_injs <- aggregate(storm_event$INJURIES, by=list(storm_event$EVTYPE), FUN=sum)
colnames(event_injs) <- c("EVTYPE","INJURIES")
head(event_injs)
##                  EVTYPE INJURIES
## 1    HIGH SURF ADVISORY        0
## 2         COASTAL FLOOD        0
## 3           FLASH FLOOD        0
## 4             LIGHTNING        0
## 5             TSTM WIND        0
## 6       TSTM WIND (G45)        0

Step 4. Do the same for economic variables

storm_econ <- subset(storm, !storm$PROPDMG == 0 & !storm$CROPDMG == 0, select=c(EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP))
head(storm_econ)
##                           EVTYPE PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 187566 HURRICANE OPAL/HIGH WINDS     0.1          B      10          M
## 187571        THUNDERSTORM WINDS     5.0          M     500          K
## 187581            HURRICANE ERIN    25.0          M       1          M
## 187583            HURRICANE OPAL    48.0          M       4          M
## 187584            HURRICANE OPAL    20.0          m      10          m
## 187653        THUNDERSTORM WINDS    50.0          K      50          K
## Select only the valid entries for PROPDMGEXP and CROPDMGEXP
storm_econ <- subset(storm_econ, storm_econ$PROPDMGEXP == "K" | storm_econ$PROPDMGEXP == "k" |storm_econ$PROPDMGEXP == "M" |storm_econ$PROPDMGEXP == "m" | storm_econ$PROPDMGEXP == "B" | storm_econ$PROPDMGEXP == "b")

storm_econ <- subset(storm_econ, storm_econ$CROPDMGEXP == "K" | storm_econ$CROPDMGEXP == "k" | storm_econ$CROPDMGEXP == "M" | storm_econ$CROPDMGEXP == "m" | storm_econ$CROPDMGEXP == "B" | storm_econ$CROPDMGEXP == "b")

## Convert PROPDMGEXP and CROPDMGEXP into numeric types
storm_econ$PROPDMGEXP <- gsub("m", 1000000, storm_econ$PROPDMGEXP, ignore.case=TRUE)
storm_econ$PROPDMGEXP <- gsub("k", 1000, storm_econ$PROPDMGEXP, ignore.case=TRUE)

storm_econ$PROPDMGEXP <- gsub("k", 1000, storm_econ$PROPDMGEXP, ignore.case=TRUE)
storm_econ$PROPDMGEXP <- gsub("b", 1000000000, storm_econ$PROPDMGEXP, ignore.case=TRUE)
storm_econ$PROPDMGEXP <- as.numeric(storm_econ$PROPDMGEXP)
storm_econ$CROPDMGEXP <- gsub("m", 1000000, storm_econ$CROPDMGEXP, ignore.case=TRUE)
storm_econ$CROPDMGEXP <- gsub("k", 1000, storm_econ$CROPDMGEXP, ignore.case=TRUE)
storm_econ$CROPDMGEXP <- gsub("b", 1000000000, storm_econ$CROPDMGEXP, ignore.case=TRUE)
storm_econ$CROPDMGEXP <- as.numeric(storm_econ$CROPDMGEXP)
storm_econ$PROPDMGEXP <- as.numeric(storm_econ$PROPDMGEXP)

## calculate total damage and sum by event type and rename columns

storm_econ$TOTALDMG <- (storm_econ$CROPDMG * storm_econ$CROPDMGEXP) + (storm_econ$PROPDMG * storm_econ$PROPDMGEXP)

storm_econ <- aggregate(storm_econ$TOTALDMG, by=list(storm_econ$EVTYPE), FUN=sum)

colnames(storm_econ) <- c("EVTYPE","TOTALDMG") 

head(storm_econ)
##             EVTYPE   TOTALDMG
## 1         BLIZZARD  169260000
## 2 COASTAL FLOODING   25356000
## 3 COLD AIR TORNADO        100
## 4          DROUGHT 1464487000
## 5   DRY MICROBURST     123000
## 6       DUST STORM    2390000

Results

Question 1. What type of weather events are most harmful to popuation health?

Because there are so many observations, we will take the top 5 events, based on fatality/injury count.

Step 1. Arrange the table in decreasing order and the subset the first 5 rows.

event_fats <- event_fats[order(event_fats$FATALITIES, decreasing = TRUE),]  
event_fats_top5 <- event_fats[1:5,]

event_injs <- event_injs[order(event_injs$INJURIES,decreasing = TRUE),]
event_injs_top5 <- event_injs[1:5,]

Step 2. Plot the top 5 weather events by number of fatalities.

library(ggplot2)
fats_plot <- ggplot(event_fats_top5, aes(x=EVTYPE, y=FATALITIES)) + geom_bar(stat = "identity") + xlab("Weather Event") +  ylab("Deaths") + ggtitle("Top 5 Weather Events for Number of Deaths")
fats_plot

Step 2. Do the same for injuries

injs_plot <- ggplot(event_injs_top5, aes(x=EVTYPE, y=INJURIES)) + geom_bar(fill="blue", stat = "identity") + xlab("Weather Event") +  ylab("Injuries") + ggtitle("Top 5 Weather Events for Number of Injuries")
injs_plot

Note that according to both figures, it appears that tornados are the weather event with the most harmful impact on population health.

Question 2. What types of weatger events have the greatest economic impact?

Because there are so many observations, we will take the top 5 events, based on total damage cost.

Step 1. Arrange the table in decreasing order and the subset the first 5 rows

storm_econ <- storm_econ[order(storm_econ$TOTALDMG, decreasing = TRUE),]
storm_econ_top5 <- storm_econ[1:5,]

Step 2. Plot the economic impact data to find the event type with this higest cost.

econ_plot <- ggplot(storm_econ_top5, aes(x=EVTYPE, y=TOTALDMG)) + geom_bar(fill = "green", stat = "identity") + xlab("Weather Event") + ylab("Total Damage") + ggtitle("Top 5 Weather Events by Damage Cost")
econ_plot

Note that according to the figure, it appears that flood is the weather event with the highest economic impact.