Black Only Pilot

## 
## ********************* PROCESS for R Version 4.0.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2021 by Andrew F. Hayes ALL RIGHTS RESERVED
## 

Main analyses

Cand. ID Rating
Bill W 9
Sam B 9
Fred W 2
Name ~ 4
Paula W 3
Jack W 5
Jane W 4

H1 - Likert

Regression

## 
## Call:
## lm(formula = mediator ~ condition_f * assignment_f, data = black1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.660 -1.460  0.245  1.540  3.555 
## 
## Coefficients:
##                                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   5.660      0.280   20.21 < 0.0000000000000002 ***
## condition_fcontrol                           -1.686      0.382   -4.41             0.000014 ***
## assignment_fother_white                      -0.500      0.391   -1.28                 0.20    
## assignment_fother_black                      -0.405      0.402   -1.01                 0.32    
## condition_fcontrol:assignment_fother_white    0.175      0.534    0.33                 0.74    
## condition_fcontrol:assignment_fother_black   -0.124      0.549   -0.23                 0.82    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2 on 317 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.16,   Adjusted R-squared:  0.147 
## F-statistic: 12.1 on 5 and 317 DF,  p-value: 0.0000000000968

Estimated Marginal Means

##  condition_f assignment_f emmean    SE  df lower.CL upper.CL
##  race        self            5.7 0.280 317      5.1      6.2
##  control     self            4.0 0.260 317      3.5      4.5
##  race        other_white     5.2 0.272 317      4.6      5.7
##  control     other_white     3.7 0.256 317      3.1      4.2
##  race        other_black     5.3 0.289 317      4.7      5.8
##  control     other_black     3.4 0.267 317      2.9      4.0
## 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df t.ratio p.value
##  race - control     1.69 0.38 317   4.400  <.0001
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df t.ratio p.value
##  race - control     1.51 0.37 317   4.000  0.0001
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df t.ratio p.value
##  race - control     1.81 0.39 317   4.600  <.0001

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df t.ratio p.value
##  self - other_white            0.50 0.39 317   1.280  0.6100
##  self - other_black            0.40 0.40 317   1.010  0.9500
##  other_white - other_black    -0.09 0.40 317  -0.240  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df t.ratio p.value
##  self - other_white            0.32 0.36 317   0.890  1.0000
##  self - other_black            0.53 0.37 317   1.420  0.4700
##  other_white - other_black     0.20 0.37 317   0.550  1.0000
## 
## P value adjustment: bonferroni method for 3 tests

Graphs

Ordinal Ranking

Regression

## formula: rank_diversity ~ condition_f * assignment_f
## data:    black1_clean
## 
##  link  threshold nobs logLik  AIC    niter max.grad cond.H 
##  logit flexible  323  -224.04 462.09 6(1)  4.78e-13 2.4e+02
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)   
## condition_fcontrol                          -1.5713     0.4869   -3.23   0.0012 **
## assignment_fother_white                      0.5579     0.3796    1.47   0.1417   
## assignment_fother_black                      0.1942     0.3935    0.49   0.6217   
## condition_fcontrol:assignment_fother_white  -0.5579     0.6837   -0.82   0.4145   
## condition_fcontrol:assignment_fother_black   0.0699     0.6803    0.10   0.9181   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 2|4    0.423      0.275    1.54
## 4|3    0.925      0.281    3.29
## (2 observations deleted due to missingness)

Graphs

Binary (based on ranking)

Regression

## 
## Call:
## glm(formula = bin_rank_div ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                  -1.516      0.368   -4.12 0.000038 ***
## condition_fcontrol                           -1.392      0.698   -2.00    0.046 *  
## assignment_fother_white                      -0.542      0.569   -0.95    0.341    
## assignment_fother_black                      -0.405      0.571   -0.71    0.478    
## condition_fcontrol:assignment_fother_white   -0.627      1.301   -0.48    0.630    
## condition_fcontrol:assignment_fother_black   -0.675      1.302   -0.52    0.604    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 180.87  on 322  degrees of freedom
## Residual deviance: 164.26  on 317  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 176.3
## 
## Number of Fisher Scoring iterations: 6
##             (Intercept)      condition_fcontrol assignment_fother_white assignment_fother_black 
##                    0.24                    0.18                    0.51                    0.58
##                         2.5 % 97.5 %
## (Intercept)             0.118   0.44
## condition_fcontrol      0.059   0.46
## assignment_fother_white 0.179   1.35
## assignment_fother_black 0.203   1.53

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self           -1.5 0.37 Inf      -2.2     -0.79
##  control     self           -2.9 0.59 Inf      -4.1     -1.75
##  race        other_white    -2.1 0.43 Inf      -2.9     -1.21
##  control     other_white    -4.1 1.01 Inf      -6.1     -2.10
##  race        other_black    -1.9 0.44 Inf      -2.8     -1.07
##  control     other_black    -4.0 1.01 Inf      -6.0     -2.01
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate  SE  df z.ratio p.value
##  race - control     1.39 0.7 Inf   2.000  0.0460
## 
## assignment_f = other_white:
##  contrast       estimate  SE  df z.ratio p.value
##  race - control     2.02 1.1 Inf   1.840  0.0660
## 
## assignment_f = other_black:
##  contrast       estimate  SE  df z.ratio p.value
##  race - control     2.07 1.1 Inf   1.880  0.0600
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            0.54 0.57 Inf   0.950  1.0000
##  self - other_black            0.41 0.57 Inf   0.710  1.0000
##  other_white - other_black    -0.14 0.62 Inf  -0.220  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            1.17 1.17 Inf   1.000  0.9500
##  self - other_black            1.08 1.17 Inf   0.920  1.0000
##  other_white - other_black    -0.09 1.43 Inf  -0.060  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

H3a: Selecting unqualified candidate

Regression

## 
## Call:
## glm(formula = chosename ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                  -1.386      0.354   -3.92 0.000088 ***
## condition_fcontrol                           -0.811      0.557   -1.46    0.145    
## assignment_fother_white                      -1.852      0.803   -2.31    0.021 *  
## assignment_fother_black                      -0.536      0.562   -0.95    0.341    
## condition_fcontrol:assignment_fother_white    0.682      1.161    0.59    0.557    
## condition_fcontrol:assignment_fother_black   -0.120      0.924   -0.13    0.897    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 195.49  on 324  degrees of freedom
## Residual deviance: 182.81  on 319  degrees of freedom
## AIC: 194.8
## 
## Number of Fisher Scoring iterations: 6
##             (Intercept)      condition_fcontrol assignment_fother_white assignment_fother_black 
##                    0.24                    0.48                    0.21                    0.56
##                         2.5 % 97.5 %
## (Intercept)             0.125   0.44
## condition_fcontrol      0.209   1.04
## assignment_fother_white 0.058   0.60
## assignment_fother_black 0.226   1.32

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self           -1.4 0.35 Inf      -2.1     -0.69
##  control     self           -2.2 0.43 Inf      -3.0     -1.35
##  race        other_white    -3.2 0.72 Inf      -4.7     -1.83
##  control     other_white    -3.4 0.72 Inf      -4.8     -1.96
##  race        other_black    -1.9 0.44 Inf      -2.8     -1.07
##  control     other_black    -2.9 0.59 Inf      -4.0     -1.69
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     0.81 0.56 Inf   1.460  0.1500
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     0.13 1.02 Inf   0.130  0.9000
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     0.93 0.74 Inf   1.260  0.2100
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            1.85 0.80 Inf   2.310  0.0600
##  self - other_black            0.54 0.56 Inf   0.950  1.0000
##  other_white - other_black    -1.32 0.84 Inf  -1.560  0.3500
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            1.17 0.84 Inf   1.400  0.4900
##  self - other_black            0.66 0.73 Inf   0.890  1.0000
##  other_white - other_black    -0.51 0.93 Inf  -0.550  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

H3b: Mediation

Likert mediator

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = chosename ~ cond_num + (mediator), data = black1_clean, 
##     z = "assignment_num")
## 
## The DV (Y) was  chosename . The IV (X) was  cond_num . The mediating variable(s) =  mediator .
## 
## Total effect(c) of  cond_num  on  chosename  =  0.06   S.E. =  0.03  t  =  1.8  df=  323   with p =  0.072
## Direct effect (c') of  cond_num  on  chosename  removing  mediator  =  0   S.E. =  0.03  t  =  0.03  df=  322   with p =  0.97
## Indirect effect (ab) of  cond_num  on  chosename  through  mediator   =  0.06 
## Mean bootstrapped indirect effect =  0.06  with standard error =  0.02  Lower CI =  0.03    Upper CI =  0.09
## R = 0.25 R2 = 0.06   F = 11 on 2 and 322 DF   p-value:  0.00000063 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Ordinal mediator

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = chosename ~ cond_num + (diversityr), data = black1_clean, 
##     z = "assignment_num")
## 
## The DV (Y) was  chosename . The IV (X) was  cond_num . The mediating variable(s) =  diversityr .
## 
## Total effect(c) of  cond_num  on  chosename  =  0.06   S.E. =  0.03  t  =  1.8  df=  323   with p =  0.072
## Direct effect (c') of  cond_num  on  chosename  removing  diversityr  =  -0.02   S.E. =  0.03  t  =  -0.55  df=  322   with p =  0.58
## Indirect effect (ab) of  cond_num  on  chosename  through  diversityr   =  0.07 
## Mean bootstrapped indirect effect =  0.07  with standard error =  0.02  Lower CI =  0.04    Upper CI =  0.12
## R = 0.35 R2 = 0.13   F = 23 on 2 and 322 DF   p-value:  0.00000000000013 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Binary mediator

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = chosename ~ cond_num + (bin_rank_div), data = black1_clean, 
##     z = "assignment_num")
## 
## The DV (Y) was  chosename . The IV (X) was  cond_num . The mediating variable(s) =  bin_rank_div .
## 
## Total effect(c) of  cond_num  on  chosename  =  0.06   S.E. =  0.03  t  =  1.8  df=  323   with p =  0.072
## Direct effect (c') of  cond_num  on  chosename  removing  bin_rank_div  =  0.01   S.E. =  0.03  t  =  0.42  df=  322   with p =  0.67
## Indirect effect (ab) of  cond_num  on  chosename  through  bin_rank_div   =  0.04 
## Mean bootstrapped indirect effect =  0.04  with standard error =  0.02  Lower CI =  0.02    Upper CI =  0.08
## R = 0.39 R2 = 0.15   F = 28 on 2 and 322 DF   p-value:  0.0000000000000003 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Exploratory

Moderated Mediation

Likert Mediator

Long Summary

## Call: psych::mediate(y = chosename ~ cond_num * assignment_num + (mediator), 
##     data = black1_clean)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##                         chosename   se    t  df     Prob
## Intercept                    0.00 0.02 0.00 320 0.998000
## cond_num                     0.00 0.03 0.08 320 0.935000
## assignment_num               0.02 0.02 1.15 320 0.253000
## cond_num*assignment_num      0.02 0.04 0.43 320 0.668000
## mediator                     0.03 0.01 4.19 320 0.000036
## 
## R = 0.26 R2 = 0.07   F = 5.9 on 4 and 320 DF   p-value:  0.00014 
## 
##  Total effect estimates (c) (X on Y) 
##                         chosename   se    t  df Prob
## Intercept                    0.00 0.02 0.00 321 1.00
## cond_num                     0.06 0.03 1.81 321 0.07
## assignment_num               0.03 0.02 1.53 321 0.13
## cond_num*assignment_num      0.01 0.04 0.36 321 0.72
## 
##  'a'  effect estimates (X on M) 
##                         mediator   se     t  df             Prob
## Intercept                   0.00 0.11  0.00 321 0.99900000000000
## cond_num                    1.67 0.22  7.58 321 0.00000000000038
## assignment_num              0.24 0.14  1.79 321 0.07370000000000
## cond_num*assignment_num    -0.07 0.27 -0.25 321 0.80200000000000
## 
##  'b'  effect estimates (M on Y controlling for X) 
##          chosename   se   t  df     Prob
## mediator      0.03 0.01 4.2 320 0.000036
## 
##  'ab'  effect estimates (through all  mediators)
##                         chosename boot   sd lower upper
## cond_num                     0.05 0.06 0.01  0.03  0.09
## assignment_num               0.01 0.01 0.00  0.03  0.09
## cond_num*assignment_num      0.00 0.00 0.01  0.03  0.09

Process

## 
## ********************* PROCESS for R Version 4.0.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                       
## Model : 7             
##     Y : chosename     
##     X : cond_num      
##     M : mediator      
##     W : assignment_num
## 
## Sample size: 323
## 
## Random seed: 728995
## 
## 
## *********************************************************************** 
## Outcome Variable: mediator
## 
## Model Summary: 
##           R      R-sq       MSE         F       df1       df2         p
##      0.3977    0.1581    3.9088   19.9734    3.0000  319.0000    0.0000
## 
## Model: 
##                    coeff        se         t         p      LLCI      ULCI
## constant          3.6890    0.1503   24.5367    0.0000    3.3932    3.9848
## cond_num          1.6635    0.2206    7.5397    0.0000    1.2294    2.0976
## assignment_num    0.2649    0.1860    1.4239    0.1554   -0.1011    0.6309
## Int_1            -0.0593    0.2737   -0.2166    0.8286   -0.5978    0.4792
## 
## Product terms key:
## Int_1  :  cond_num  x  assignment_num      
## 
## Test(s) of highest order unconditional interaction(s):
##       R2-chng         F       df1       df2         p
## X*W    0.0001    0.0469    1.0000  319.0000    0.8286
## 
## *********************************************************************** 
## Outcome Variable: chosename
## 
## Coding of binary Y for logistic regression analysis:
##   chosename  Analysis
##      0.0000    0.0000
##      1.0000    1.0000
## 
## Model Summary: 
##        -2LL   ModelLL        df         p  McFadden  CoxSnell  Nagelkrk
##    168.9435   26.1718    2.0000    0.0000    0.1341    0.0778    0.1717
## 
## Model: 
##              coeff        se         Z         p      LLCI      ULCI
## constant   -5.8756    1.0422   -5.6375    0.0000   -7.9184   -3.8329
## cond_num    0.0518    0.4225    0.1227    0.9024   -0.7763    0.8800
## mediator    0.6497    0.1697    3.8279    0.0001    0.3170    0.9824
## 
## These results are expressed in a log-odds metric.
## 
## *********************************************************************** 
## Bootstrapping progress:
## 
  |                                                                    
  |                                                              |   0%
  |                                                                    
  |                                                              |   1%
  |                                                                    
  |>                                                             |   1%
  |                                                                    
  |>                                                             |   2%
  |                                                                    
  |>>                                                            |   2%
  |                                                                    
  |>>                                                            |   3%
  |                                                                    
  |>>                                                            |   4%
  |                                                                    
  |>>>                                                           |   4%
  |                                                                    
  |>>>                                                           |   5%
  |                                                                    
  |>>>                                                           |   6%
  |                                                                    
  |>>>>                                                          |   6%
  |                                                                    
  |>>>>                                                          |   7%
  |                                                                    
  |>>>>>                                                         |   7%
  |                                                                    
  |>>>>>                                                         |   8%
  |                                                                    
  |>>>>>                                                         |   9%
  |                                                                    
  |>>>>>>                                                        |   9%
  |                                                                    
  |>>>>>>                                                        |  10%
  |                                                                    
  |>>>>>>>                                                       |  10%
  |                                                                    
  |>>>>>>>                                                       |  11%
  |                                                                    
  |>>>>>>>                                                       |  12%
  |                                                                    
  |>>>>>>>>                                                      |  12%
  |                                                                    
  |>>>>>>>>                                                      |  13%
  |                                                                    
  |>>>>>>>>                                                      |  14%
  |                                                                    
  |>>>>>>>>>                                                     |  14%
  |                                                                    
  |>>>>>>>>>                                                     |  15%
  |                                                                    
  |>>>>>>>>>>                                                    |  15%
  |                                                                    
  |>>>>>>>>>>                                                    |  16%
  |                                                                    
  |>>>>>>>>>>                                                    |  17%
  |                                                                    
  |>>>>>>>>>>>                                                   |  17%
  |                                                                    
  |>>>>>>>>>>>                                                   |  18%
  |                                                                    
  |>>>>>>>>>>>                                                   |  19%
  |                                                                    
  |>>>>>>>>>>>>                                                  |  19%
  |                                                                    
  |>>>>>>>>>>>>                                                  |  20%
  |                                                                    
  |>>>>>>>>>>>>>                                                 |  20%
  |                                                                    
  |>>>>>>>>>>>>>                                                 |  21%
  |                                                                    
  |>>>>>>>>>>>>>                                                 |  22%
  |                                                                    
  |>>>>>>>>>>>>>>                                                |  22%
  |                                                                    
  |>>>>>>>>>>>>>>                                                |  23%
  |                                                                    
  |>>>>>>>>>>>>>>>                                               |  23%
  |                                                                    
  |>>>>>>>>>>>>>>>                                               |  24%
  |                                                                    
  |>>>>>>>>>>>>>>>                                               |  25%
  |                                                                    
  |>>>>>>>>>>>>>>>>                                              |  25%
  |                                                                    
  |>>>>>>>>>>>>>>>>                                              |  26%
  |                                                                    
  |>>>>>>>>>>>>>>>>                                              |  27%
  |                                                                    
  |>>>>>>>>>>>>>>>>>                                             |  27%
  |                                                                    
  |>>>>>>>>>>>>>>>>>                                             |  28%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>                                            |  28%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>                                            |  29%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>                                            |  30%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>                                           |  30%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>                                           |  31%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>                                          |  31%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>                                          |  32%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>                                          |  33%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>                                         |  33%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>                                         |  34%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>                                         |  35%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>                                        |  35%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>                                        |  36%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>                                       |  36%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>                                       |  37%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>                                       |  38%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>                                      |  38%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>                                      |  39%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>                                      |  40%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>                                     |  40%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>                                     |  41%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                                    |  41%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                                    |  42%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                                    |  43%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                                   |  43%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                                   |  44%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                  |  44%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                  |  45%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                  |  46%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                 |  46%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                 |  47%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                 |  48%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                |  48%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                |  49%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                               |  49%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                               |  50%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                               |  51%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                              |  51%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                              |  52%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             |  52%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             |  53%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             |  54%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                            |  54%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                            |  55%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                            |  56%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                           |  56%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                           |  57%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                          |  57%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                          |  58%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                          |  59%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                         |  59%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                         |  60%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                        |  60%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                        |  61%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                        |  62%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                       |  62%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                       |  63%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                       |  64%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                      |  64%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                      |  65%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                     |  65%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                     |  66%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                     |  67%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                    |  67%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                    |  68%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                    |  69%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                   |  69%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                   |  70%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                  |  70%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                  |  71%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                  |  72%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                 |  72%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                 |  73%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                |  73%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                |  74%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                |  75%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>               |  75%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>               |  76%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>               |  77%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              |  77%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              |  78%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             |  78%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             |  79%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             |  80%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            |  80%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            |  81%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           |  81%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           |  82%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           |  83%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          |  83%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          |  84%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          |  85%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         |  85%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         |  86%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |  86%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |  87%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |  88%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       |  88%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       |  89%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       |  90%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      |  90%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      |  91%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     |  91%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     |  92%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     |  93%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    |  93%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    |  94%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   |  94%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   |  95%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   |  96%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  |  96%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  |  97%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  |  98%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |  98%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |  99%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>|  99%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%
## 
## **************** DIRECT AND INDIRECT EFFECTS OF X ON Y ****************
## 
## Direct effect of X on Y:
##      effect        se         Z         p      LLCI      ULCI
##      0.0518    0.4225    0.1227    0.9024   -0.7763    0.8800
## 
## Conditional indirect effects of X on Y:
## 
## INDIRECT EFFECT:
## 
## cond_num    ->    mediator    ->    chosename
## 
##   assignment_num    Effect    BootSE  BootLLCI  BootULCI
##          -1.0000    1.1193    0.4745    0.5089    2.3166
##           0.0000    1.0808    0.4364    0.5266    2.2410
##           1.0000    1.0423    0.4795    0.4379    2.2886
## 
##      Index of moderated mediation:
##                    Index    BootSE  BootLLCI  BootULCI
## assignment_num   -0.0385    0.1925   -0.4265    0.3515
## 
## ---
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 5000
## 
## W values in conditional tables are the 16th, 50th, and 84th percentiles.
##  
## NOTE: Some cases with missing data were deleted. The number of deleted cases was: 2

Plot

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = chosename ~ cond_num * assignment_num + (mediator), 
##     data = black1_clean)
## 
## The DV (Y) was  chosename . The IV (X) was  cond_num assignment_num cond_num*assignment_num . The mediating variable(s) =  mediator .
## 
## Total effect(c) of  cond_num  on  chosename  =  0.06   S.E. =  0.03  t  =  1.8  df=  321   with p =  0.071
## Direct effect (c') of  cond_num  on  chosename  removing  mediator  =  0   S.E. =  0.03  t  =  0.08  df=  320   with p =  0.93
## Indirect effect (ab) of  cond_num  on  chosename  through  mediator   =  0.05 
## Mean bootstrapped indirect effect =  0.06  with standard error =  0.01  Lower CI =  0.03    Upper CI =  0.09
## 
## Total effect(c) of  assignment_num  on  chosename  =  0.03   S.E. =  0.02  t  =  1.5  df=  321   with p =  0.13
## Direct effect (c') of  assignment_num  on  chosename  removing  mediator  =  0.02   S.E. =  0.02  t  =  1.1  df=  320   with p =  0.25
## Indirect effect (ab) of  assignment_num  on  chosename  through  mediator   =  0.01 
## Mean bootstrapped indirect effect =  0.01  with standard error =  0  Lower CI =  0    Upper CI =  0.02
## 
## Total effect(c) of  cond_num*assignment_num  on  chosename  =  0.01   S.E. =  0.04  t  =  0.36  df=  321   with p =  0.72
## Direct effect (c') of  cond_num*assignment_num  on  chosename  removing  mediator  =  0.02   S.E. =  0.04  t  =  0.43  df=  320   with p =  0.67
## Indirect effect (ab) of  cond_num*assignment_num  on  chosename  through  mediator   =  0 
## Mean bootstrapped indirect effect =  0  with standard error =  0.01  Lower CI =  -0.02    Upper CI =  0.01
## R = 0.26 R2 = 0.07   F = 5.9 on 4 and 320 DF   p-value:  0.000031 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Ordinal Mediator

Long Summary

## Call: psych::mediate(y = chosename ~ cond_num * assignment_num + (diversityr), 
##     data = black1_clean)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##                         chosename   se     t  df          Prob
## Intercept                    0.00 0.01  0.00 320 0.99800000000
## cond_num                    -0.02 0.03 -0.54 320 0.59100000000
## assignment_num               0.03 0.02  1.54 320 0.12500000000
## cond_num*assignment_num      0.01 0.04  0.37 320 0.71500000000
## diversityr                   0.17 0.03  6.51 320 0.00000000028
## 
## R = 0.36 R2 = 0.13   F = 12 on 4 and 320 DF   p-value:  0.0000000029 
## 
##  Total effect estimates (c) (X on Y) 
##                         chosename   se    t  df Prob
## Intercept                    0.00 0.02 0.00 321 1.00
## cond_num                     0.06 0.03 1.81 321 0.07
## assignment_num               0.03 0.02 1.53 321 0.13
## cond_num*assignment_num      0.01 0.04 0.36 321 0.72
## 
##  'a'  effect estimates (X on M) 
##                         diversityr   se    t  df          Prob
## Intercept                     0.00 0.03 0.00 321 1.00000000000
## cond_num                      0.45 0.07 6.89 321 0.00000000003
## assignment_num                0.01 0.04 0.25 321 0.80300000000
## cond_num*assignment_num       0.00 0.08 0.05 321 0.96000000000
## 
##  'b'  effect estimates (M on Y controlling for X) 
##            chosename   se   t  df          Prob
## diversityr      0.17 0.03 6.5 320 0.00000000028
## 
##  'ab'  effect estimates (through all  mediators)
##                         chosename boot   sd lower upper
## cond_num                     0.07 0.07 0.02  0.04  0.12
## assignment_num               0.00 0.00 0.01  0.04  0.12
## cond_num*assignment_num      0.00 0.00 0.01  0.04  0.12

Plot

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = chosename ~ cond_num * assignment_num + (diversityr), 
##     data = black1_clean)
## 
## The DV (Y) was  chosename . The IV (X) was  cond_num assignment_num cond_num*assignment_num . The mediating variable(s) =  diversityr .
## 
## Total effect(c) of  cond_num  on  chosename  =  0.06   S.E. =  0.03  t  =  1.8  df=  321   with p =  0.071
## Direct effect (c') of  cond_num  on  chosename  removing  diversityr  =  -0.02   S.E. =  0.03  t  =  -0.54  df=  320   with p =  0.59
## Indirect effect (ab) of  cond_num  on  chosename  through  diversityr   =  0.07 
## Mean bootstrapped indirect effect =  0.07  with standard error =  0.02  Lower CI =  0.03    Upper CI =  0.12
## 
## Total effect(c) of  assignment_num  on  chosename  =  0.03   S.E. =  0.02  t  =  1.5  df=  321   with p =  0.13
## Direct effect (c') of  assignment_num  on  chosename  removing  diversityr  =  0.03   S.E. =  0.02  t  =  1.5  df=  320   with p =  0.13
## Indirect effect (ab) of  assignment_num  on  chosename  through  diversityr   =  0 
## Mean bootstrapped indirect effect =  0  with standard error =  0.01  Lower CI =  -0.01    Upper CI =  0.02
## 
## Total effect(c) of  cond_num*assignment_num  on  chosename  =  0.01   S.E. =  0.04  t  =  0.36  df=  321   with p =  0.72
## Direct effect (c') of  cond_num*assignment_num  on  chosename  removing  diversityr  =  0.01   S.E. =  0.04  t  =  0.37  df=  320   with p =  0.71
## Indirect effect (ab) of  cond_num*assignment_num  on  chosename  through  diversityr   =  0 
## Mean bootstrapped indirect effect =  0  with standard error =  0.01  Lower CI =  -0.03    Upper CI =  0.03
## R = 0.36 R2 = 0.13   F = 12 on 4 and 320 DF   p-value:  0.000000000074 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Process

## 
## ********************* PROCESS for R Version 4.0.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##                       
## Model : 7             
##     Y : chosename     
##     X : cond_num      
##     M : diversityr    
##     W : assignment_num
## 
## Sample size: 323
## 
## Random seed: 282103
## 
## 
## *********************************************************************** 
## Outcome Variable: diversityr
## 
## Model Summary: 
##           R      R-sq       MSE         F       df1       df2         p
##      0.3587    0.1287    0.3466   15.7044    3.0000  319.0000    0.0000
## 
## Model: 
##                    coeff        se         t         p      LLCI      ULCI
## constant          2.1560    0.0448   48.1571    0.0000    2.0679    2.2441
## cond_num          0.4504    0.0657    6.8560    0.0000    0.3212    0.5797
## assignment_num    0.0047    0.0554    0.0850    0.9323   -0.1043    0.1137
## Int_1             0.0075    0.0815    0.0916    0.9271   -0.1529    0.1678
## 
## Product terms key:
## Int_1  :  cond_num  x  assignment_num      
## 
## Test(s) of highest order unconditional interaction(s):
##       R2-chng         F       df1       df2         p
## X*W    0.0000    0.0084    1.0000  319.0000    0.9271
## 
## *********************************************************************** 
## Outcome Variable: chosename
## 
## Coding of binary Y for logistic regression analysis:
##   chosename  Analysis
##      0.0000    0.0000
##      1.0000    1.0000
## 
## Model Summary: 
##        -2LL   ModelLL        df         p  McFadden  CoxSnell  Nagelkrk
##    163.9747   31.1406    2.0000    0.0000    0.1596    0.0919    0.2027
## 
## Model: 
##                coeff        se         Z         p      LLCI      ULCI
## constant     -6.1369    0.7911   -7.7571    0.0000   -7.6875   -4.5863
## cond_num     -0.1656    0.4678   -0.3539    0.7234   -1.0825    0.7514
## diversityr    1.4839    0.2874    5.1630    0.0000    0.9206    2.0472
## 
## These results are expressed in a log-odds metric.
## 
## *********************************************************************** 
## Bootstrapping progress:
## 
  |                                                                    
  |                                                              |   0%
  |                                                                    
  |                                                              |   1%
  |                                                                    
  |>                                                             |   1%
  |                                                                    
  |>                                                             |   2%
  |                                                                    
  |>>                                                            |   2%
  |                                                                    
  |>>                                                            |   3%
  |                                                                    
  |>>                                                            |   4%
  |                                                                    
  |>>>                                                           |   4%
  |                                                                    
  |>>>                                                           |   5%
  |                                                                    
  |>>>                                                           |   6%
  |                                                                    
  |>>>>                                                          |   6%
  |                                                                    
  |>>>>                                                          |   7%
  |                                                                    
  |>>>>>                                                         |   7%
  |                                                                    
  |>>>>>                                                         |   8%
  |                                                                    
  |>>>>>                                                         |   9%
  |                                                                    
  |>>>>>>                                                        |   9%
  |                                                                    
  |>>>>>>                                                        |  10%
  |                                                                    
  |>>>>>>>                                                       |  10%
  |                                                                    
  |>>>>>>>                                                       |  11%
  |                                                                    
  |>>>>>>>                                                       |  12%
  |                                                                    
  |>>>>>>>>                                                      |  12%
  |                                                                    
  |>>>>>>>>                                                      |  13%
  |                                                                    
  |>>>>>>>>                                                      |  14%
  |                                                                    
  |>>>>>>>>>                                                     |  14%
  |                                                                    
  |>>>>>>>>>                                                     |  15%
  |                                                                    
  |>>>>>>>>>>                                                    |  15%
  |                                                                    
  |>>>>>>>>>>                                                    |  16%
  |                                                                    
  |>>>>>>>>>>                                                    |  17%
  |                                                                    
  |>>>>>>>>>>>                                                   |  17%
  |                                                                    
  |>>>>>>>>>>>                                                   |  18%
  |                                                                    
  |>>>>>>>>>>>                                                   |  19%
  |                                                                    
  |>>>>>>>>>>>>                                                  |  19%
  |                                                                    
  |>>>>>>>>>>>>                                                  |  20%
  |                                                                    
  |>>>>>>>>>>>>>                                                 |  20%
  |                                                                    
  |>>>>>>>>>>>>>                                                 |  21%
  |                                                                    
  |>>>>>>>>>>>>>                                                 |  22%
  |                                                                    
  |>>>>>>>>>>>>>>                                                |  22%
  |                                                                    
  |>>>>>>>>>>>>>>                                                |  23%
  |                                                                    
  |>>>>>>>>>>>>>>>                                               |  23%
  |                                                                    
  |>>>>>>>>>>>>>>>                                               |  24%
  |                                                                    
  |>>>>>>>>>>>>>>>                                               |  25%
  |                                                                    
  |>>>>>>>>>>>>>>>>                                              |  25%
  |                                                                    
  |>>>>>>>>>>>>>>>>                                              |  26%
  |                                                                    
  |>>>>>>>>>>>>>>>>                                              |  27%
  |                                                                    
  |>>>>>>>>>>>>>>>>>                                             |  27%
  |                                                                    
  |>>>>>>>>>>>>>>>>>                                             |  28%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>                                            |  28%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>                                            |  29%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>                                            |  30%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>                                           |  30%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>                                           |  31%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>                                          |  31%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>                                          |  32%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>                                          |  33%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>                                         |  33%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>                                         |  34%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>                                         |  35%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>                                        |  35%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>                                        |  36%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>                                       |  36%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>                                       |  37%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>                                       |  38%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>                                      |  38%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>                                      |  39%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>                                      |  40%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>                                     |  40%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>                                     |  41%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                                    |  41%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                                    |  42%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                                    |  43%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                                   |  43%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                                   |  44%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                  |  44%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                  |  45%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                  |  46%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                 |  46%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                 |  47%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                 |  48%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                |  48%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                |  49%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                               |  49%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                               |  50%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                               |  51%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                              |  51%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                              |  52%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             |  52%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             |  53%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             |  54%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                            |  54%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                            |  55%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                            |  56%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                           |  56%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                           |  57%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                          |  57%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                          |  58%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                          |  59%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                         |  59%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                         |  60%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                        |  60%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                        |  61%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                        |  62%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                       |  62%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                       |  63%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                       |  64%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                      |  64%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                      |  65%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                     |  65%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                     |  66%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                     |  67%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                    |  67%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                    |  68%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                    |  69%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                   |  69%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                   |  70%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                  |  70%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                  |  71%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                  |  72%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                 |  72%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                 |  73%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                |  73%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                |  74%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                |  75%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>               |  75%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>               |  76%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>               |  77%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              |  77%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              |  78%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             |  78%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             |  79%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             |  80%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            |  80%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            |  81%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           |  81%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           |  82%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           |  83%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          |  83%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          |  84%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          |  85%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         |  85%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         |  86%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |  86%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |  87%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        |  88%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       |  88%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       |  89%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       |  90%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      |  90%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      |  91%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     |  91%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     |  92%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     |  93%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    |  93%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    |  94%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   |  94%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   |  95%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   |  96%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  |  96%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  |  97%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  |  98%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |  98%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |  99%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>|  99%
  |                                                                    
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%
## 
## **************** DIRECT AND INDIRECT EFFECTS OF X ON Y ****************
## 
## Direct effect of X on Y:
##      effect        se         Z         p      LLCI      ULCI
##     -0.1656    0.4678   -0.3539    0.7234   -1.0825    0.7514
## 
## Conditional indirect effects of X on Y:
## 
## INDIRECT EFFECT:
## 
## cond_num    ->    diversityr    ->    chosename
## 
##   assignment_num    Effect    BootSE  BootLLCI  BootULCI
##          -1.0000    0.6573    0.2213    0.3032    1.1550
##           0.0000    0.6684    0.1826    0.3577    1.0773
##           1.0000    0.6795    0.2331    0.2937    1.2218
## 
##      Index of moderated mediation:
##                    Index    BootSE  BootLLCI  BootULCI
## assignment_num    0.0111    0.1353   -0.2585    0.2877
## 
## ---
## 
## ******************** ANALYSIS NOTES AND ERRORS ************************ 
## 
## Level of confidence for all confidence intervals in output: 95
## 
## Number of bootstraps for percentile bootstrap confidence intervals: 5000
## 
## W values in conditional tables are the 16th, 50th, and 84th percentiles.
##  
## NOTE: Some cases with missing data were deleted. The number of deleted cases was: 2

Binary Mediator

Long Summary

## Call: psych::mediate(y = chosename ~ cond_num * assignment_num + (bin_rank_div), 
##     data = black1_clean)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##                         chosename   se    t  df            Prob
## Intercept                    0.00 0.01 0.00 320 0.9990000000000
## cond_num                     0.01 0.03 0.45 320 0.6560000000000
## assignment_num               0.02 0.02 1.17 320 0.2430000000000
## cond_num*assignment_num      0.01 0.04 0.29 320 0.7720000000000
## bin_rank_div                 0.40 0.06 7.16 320 0.0000000000056
## 
## R = 0.39 R2 = 0.15   F = 14 on 4 and 320 DF   p-value:  0.000000000071 
## 
##  Total effect estimates (c) (X on Y) 
##                         chosename   se    t  df Prob
## Intercept                    0.00 0.02 0.00 321 1.00
## cond_num                     0.06 0.03 1.81 321 0.07
## assignment_num               0.03 0.02 1.53 321 0.13
## cond_num*assignment_num      0.01 0.04 0.36 321 0.72
## 
##  'a'  effect estimates (X on M) 
##                         bin_rank_div   se    t  df    Prob
## Intercept                       0.00 0.01 0.00 321 0.99900
## cond_num                        0.11 0.03 3.74 321 0.00021
## assignment_num                  0.02 0.02 1.19 321 0.23500
## cond_num*assignment_num         0.01 0.04 0.25 321 0.80400
## 
##  'b'  effect estimates (M on Y controlling for X) 
##              chosename   se   t  df            Prob
## bin_rank_div       0.4 0.06 7.2 320 0.0000000000056
## 
##  'ab'  effect estimates (through all  mediators)
##                         chosename boot   sd lower upper
## cond_num                     0.04 0.04 0.02  0.02  0.08
## assignment_num               0.01 0.01 0.01  0.02  0.08
## cond_num*assignment_num      0.00 0.00 0.02  0.02  0.08

Plot

## 
## Mediation/Moderation Analysis 
## Call: psych::mediate(y = chosename ~ cond_num * assignment_num + (bin_rank_div), 
##     data = black1_clean)
## 
## The DV (Y) was  chosename . The IV (X) was  cond_num assignment_num cond_num*assignment_num . The mediating variable(s) =  bin_rank_div .
## 
## Total effect(c) of  cond_num  on  chosename  =  0.06   S.E. =  0.03  t  =  1.8  df=  321   with p =  0.071
## Direct effect (c') of  cond_num  on  chosename  removing  bin_rank_div  =  0.01   S.E. =  0.03  t  =  0.45  df=  320   with p =  0.66
## Indirect effect (ab) of  cond_num  on  chosename  through  bin_rank_div   =  0.04 
## Mean bootstrapped indirect effect =  0.04  with standard error =  0.02  Lower CI =  0.02    Upper CI =  0.08
## 
## Total effect(c) of  assignment_num  on  chosename  =  0.03   S.E. =  0.02  t  =  1.5  df=  321   with p =  0.13
## Direct effect (c') of  assignment_num  on  chosename  removing  bin_rank_div  =  0.02   S.E. =  0.02  t  =  1.2  df=  320   with p =  0.24
## Indirect effect (ab) of  assignment_num  on  chosename  through  bin_rank_div   =  0.01 
## Mean bootstrapped indirect effect =  0.01  with standard error =  0.01  Lower CI =  -0.01    Upper CI =  0.03
## 
## Total effect(c) of  cond_num*assignment_num  on  chosename  =  0.01   S.E. =  0.04  t  =  0.36  df=  321   with p =  0.72
## Direct effect (c') of  cond_num*assignment_num  on  chosename  removing  bin_rank_div  =  0.01   S.E. =  0.04  t  =  0.29  df=  320   with p =  0.77
## Indirect effect (ab) of  cond_num*assignment_num  on  chosename  through  bin_rank_div   =  0 
## Mean bootstrapped indirect effect =  0  with standard error =  0.02  Lower CI =  -0.03    Upper CI =  0.04
## R = 0.39 R2 = 0.15   F = 14 on 4 and 320 DF   p-value:  0.00000000000087 
## 
##  To see the longer output, specify short = FALSE in the print statement or ask for the summary

Selecting the candidates

Bill (High qualified, White)

Summary

## 
## Call:
## glm(formula = chosebill ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                   1.266      0.341    3.71  0.00021 ***
## condition_fcontrol                            0.759      0.528    1.44  0.15036    
## assignment_fother_white                       0.793      0.552    1.44  0.15084    
## assignment_fother_black                       0.175      0.504    0.35  0.72886    
## condition_fcontrol:assignment_fother_white   -0.419      0.827   -0.51  0.61235    
## condition_fcontrol:assignment_fother_black    1.790      1.197    1.49  0.13499    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 238.50  on 324  degrees of freedom
## Residual deviance: 223.68  on 319  degrees of freedom
## AIC: 235.7
## 
## Number of Fisher Scoring iterations: 6

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self            1.3 0.34 Inf      0.60       1.9
##  control     self            2.0 0.40 Inf      1.24       2.8
##  race        other_white     2.1 0.43 Inf      1.21       2.9
##  control     other_white     2.4 0.47 Inf      1.48       3.3
##  race        other_black     1.4 0.37 Inf      0.71       2.2
##  control     other_black     4.0 1.01 Inf      2.01       6.0
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -0.76 0.53 Inf  -1.440  0.1500
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -0.34 0.64 Inf  -0.530  0.5900
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -2.55 1.08 Inf  -2.370  0.0200
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -0.79 0.55 Inf  -1.440  0.4500
##  self - other_black           -0.17 0.50 Inf  -0.350  1.0000
##  other_white - other_black     0.62 0.57 Inf   1.080  0.8400
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -0.37 0.62 Inf  -0.610  1.0000
##  self - other_black           -1.96 1.09 Inf  -1.810  0.2100
##  other_white - other_black    -1.59 1.11 Inf  -1.430  0.4600
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Sam (High qualified, Black)

Summary

## 
## Call:
## glm(formula = chosesam ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                    3.89       1.01    3.85  0.00012 ***
## condition_fcontrol                            -1.69       1.10   -1.54  0.12273    
## assignment_fother_white                       -1.08       1.17   -0.92  0.35750    
## assignment_fother_black                       -1.21       1.17   -1.03  0.30386    
## condition_fcontrol:assignment_fother_white     2.25       1.44    1.56  0.11864    
## condition_fcontrol:assignment_fother_black     2.29       1.44    1.59  0.11296    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 133.42  on 324  degrees of freedom
## Residual deviance: 128.90  on 319  degrees of freedom
## AIC: 140.9
## 
## Number of Fisher Scoring iterations: 6

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self            3.9 1.01 Inf      1.91       5.9
##  control     self            2.2 0.43 Inf      1.35       3.0
##  race        other_white     2.8 0.59 Inf      1.65       4.0
##  control     other_white     3.4 0.72 Inf      1.96       4.8
##  race        other_black     2.7 0.60 Inf      1.52       3.9
##  control     other_black     3.3 0.72 Inf      1.87       4.7
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     1.69 1.10 Inf   1.540  0.1200
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -0.55 0.93 Inf  -0.590  0.5500
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -0.59 0.94 Inf  -0.630  0.5300
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            1.08 1.17 Inf   0.920  1.0000
##  self - other_black            1.21 1.17 Inf   1.030  0.9100
##  other_white - other_black     0.13 0.84 Inf   0.150  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -1.17 0.84 Inf  -1.400  0.4900
##  self - other_black           -1.08 0.84 Inf  -1.290  0.5900
##  other_white - other_black     0.09 1.02 Inf   0.090  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

Fred (Low qualified, White)

Summary

## 
## Call:
## glm(formula = chosefred ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                                      Estimate         Std. Error z value Pr(>|z|)
## (Intercept)                                  -22.566068522989  6815.963810967535       0        1
## condition_fcontrol                            18.488531079084  6815.963885568100       0        1
## assignment_fother_white                       18.614824804408  6815.963885735483       0        1
## assignment_fother_black                       -0.000000000303  9791.837872799135       0        1
## condition_fcontrol:assignment_fother_white   -37.103355883819  9228.858738146075       0        1
## condition_fcontrol:assignment_fother_black   -18.488531079084 11752.193668264686       0        1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 24.350  on 324  degrees of freedom
## Residual deviance: 20.094  on 319  degrees of freedom
## AIC: 32.09
## 
## Number of Fisher Scoring iterations: 21

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self          -22.6 6816 Inf    -13382     13336
##  control     self           -4.1    1 Inf        -6        -2
##  race        other_white    -4.0    1 Inf        -6        -2
##  control     other_white   -22.6 6222 Inf    -12218     12173
##  race        other_black   -22.6 7030 Inf    -13801     13756
##  control     other_black   -22.6 6499 Inf    -12760     12715
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -18.5 6816 Inf  -0.003  1.0000
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     18.6 6222 Inf   0.003  1.0000
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control      0.0 9574 Inf   0.000  1.0000
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -18.6 6816 Inf  -0.003  1.0000
##  self - other_black             0.0 9792 Inf   0.000  1.0000
##  other_white - other_black     18.6 7030 Inf   0.003  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            18.5 6222 Inf   0.003  1.0000
##  self - other_black            18.5 6499 Inf   0.003  1.0000
##  other_white - other_black      0.0 8997 Inf   0.000  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

Paula (Low qualified, White)

Summary

## 
## Call:
## glm(formula = chosepaula ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                   -20.6     2507.5   -0.01     0.99
## condition_fcontrol                             16.5     2507.5    0.01     0.99
## assignment_fother_white                        17.8     2507.5    0.01     0.99
## assignment_fother_black                        16.7     2507.5    0.01     0.99
## condition_fcontrol:assignment_fother_white    -17.0     2507.5   -0.01     0.99
## condition_fcontrol:assignment_fother_black    -33.2     3464.5   -0.01     0.99
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.579  on 324  degrees of freedom
## Residual deviance: 60.445  on 319  degrees of freedom
## AIC: 72.45
## 
## Number of Fisher Scoring iterations: 19

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self          -20.6 2507 Inf     -4935      4894
##  control     self           -4.1    1 Inf        -6        -2
##  race        other_white    -2.8    1 Inf        -4        -2
##  control     other_white    -3.4    1 Inf        -5        -2
##  race        other_black    -3.8    1 Inf        -6        -2
##  control     other_black   -20.6 2391 Inf     -4706      4665
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -16.5 2507 Inf  -0.010  0.9900
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control      0.6    1 Inf   0.590  0.5500
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     16.7 2391 Inf   0.010  0.9900
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -17.8 2507 Inf  -0.010  1.0000
##  self - other_black           -16.7 2507 Inf  -0.010  1.0000
##  other_white - other_black      1.0    1 Inf   0.870  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            -0.7    1 Inf  -0.570  1.0000
##  self - other_black            16.5 2391 Inf   0.010  1.0000
##  other_white - other_black     17.2 2391 Inf   0.010  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

Jack (Low qualified, White)

Summary

## 
## Call:
## glm(formula = chosejack ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                  -3.178      0.722   -4.40 0.000011 ***
## condition_fcontrol                          -17.388   2288.981   -0.01     0.99    
## assignment_fother_white                       0.365      0.935    0.39     0.70    
## assignment_fother_black                       1.050      0.863    1.22     0.22    
## condition_fcontrol:assignment_fother_white   17.257   2288.981    0.01     0.99    
## condition_fcontrol:assignment_fother_black   -1.050   3309.861    0.00     1.00    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 109.164  on 324  degrees of freedom
## Residual deviance:  95.528  on 319  degrees of freedom
## AIC: 107.5
## 
## Number of Fisher Scoring iterations: 19

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self           -3.2    1 Inf        -5        -2
##  control     self          -20.6 2289 Inf     -4507      4466
##  race        other_white    -2.8    1 Inf        -4        -2
##  control     other_white    -2.9    1 Inf        -4        -2
##  race        other_black    -2.1    0 Inf        -3        -1
##  control     other_black   -20.6 2391 Inf     -4706      4665
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     17.4 2289 Inf   0.008  0.9900
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control      0.1    1 Inf   0.156  0.8800
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     18.4 2391 Inf   0.008  0.9900
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            -0.4    1 Inf  -0.390  1.0000
##  self - other_black            -1.0    1 Inf  -1.220  0.6700
##  other_white - other_black     -0.7    1 Inf  -0.900  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -17.6 2289 Inf  -0.010  1.0000
##  self - other_black             0.0 3310 Inf   0.000  1.0000
##  other_white - other_black     17.6 2391 Inf   0.010  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

Jane (Low qualified, White)

Summary

## 
## Call:
## glm(formula = chosejane ~ condition_f * assignment_f, family = binomial(), 
##     data = black1_clean)
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                 -3.8918     1.0101   -3.85  0.00012 ***
## condition_fcontrol                          -0.1857     1.4272   -0.13  0.89646    
## assignment_fother_white                     -0.0594     1.4281   -0.04  0.96681    
## assignment_fother_black                      0.0632     1.4290    0.04  0.96473    
## condition_fcontrol:assignment_fother_white   0.7697     1.8903    0.41  0.68388    
## condition_fcontrol:assignment_fother_black   0.0254     2.0191    0.01  0.98997    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.579  on 324  degrees of freedom
## Residual deviance: 67.110  on 319  degrees of freedom
## AIC: 79.11
## 
## Number of Fisher Scoring iterations: 6

Estimated Marginal Means

##  condition_f assignment_f emmean   SE  df asymp.LCL asymp.UCL
##  race        self           -3.9 1.01 Inf      -5.9     -1.91
##  control     self           -4.1 1.01 Inf      -6.1     -2.10
##  race        other_white    -4.0 1.01 Inf      -5.9     -1.97
##  control     other_white    -3.4 0.72 Inf      -4.8     -1.96
##  race        other_black    -3.8 1.01 Inf      -5.8     -1.85
##  control     other_black    -4.0 1.01 Inf      -6.0     -2.01
## 
## Results are given on the logit (not the response) scale. 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     0.19 1.43 Inf   0.130  0.9000
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control    -0.58 1.24 Inf  -0.470  0.6400
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df z.ratio p.value
##  race - control     0.16 1.43 Inf   0.110  0.9100
## 
## Results are given on the log odds ratio (not the response) scale.

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white            0.06 1.43 Inf   0.040  1.0000
##  self - other_black           -0.06 1.43 Inf  -0.040  1.0000
##  other_white - other_black    -0.12 1.43 Inf  -0.090  1.0000
## 
## condition_f = control:
##  contrast                  estimate   SE  df z.ratio p.value
##  self - other_white           -0.71 1.24 Inf  -0.570  1.0000
##  self - other_black           -0.09 1.43 Inf  -0.060  1.0000
##  other_white - other_black     0.62 1.24 Inf   0.500  1.0000
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: bonferroni method for 3 tests

Graphs

Other considerations

Qualifications - Likert

## 
## Call:
## lm(formula = qualifications ~ condition_f * assignment_f, data = black1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.467 -0.302  0.309  0.698  0.830 
## 
## Coefficients:
##                                            Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                  6.2800     0.1389   45.22 <0.0000000000000002 ***
## condition_fcontrol                           0.4614     0.1895    2.43               0.015 *  
## assignment_fother_white                      0.0219     0.1936    0.11               0.910    
## assignment_fother_black                     -0.1098     0.1995   -0.55               0.583    
## condition_fcontrol:assignment_fother_white  -0.2966     0.2649   -1.12               0.264    
## condition_fcontrol:assignment_fother_black   0.0593     0.2720    0.22               0.827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.98 on 317 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.045,  Adjusted R-squared:  0.03 
## F-statistic: 2.99 on 5 and 317 DF,  p-value: 0.0119

Estimated Marginal Means

##  condition_f assignment_f emmean    SE  df lower.CL upper.CL
##  race        self            6.3 0.139 317      6.0      6.6
##  control     self            6.7 0.129 317      6.5      7.0
##  race        other_white     6.3 0.135 317      6.0      6.6
##  control     other_white     6.5 0.127 317      6.2      6.7
##  race        other_black     6.2 0.143 317      5.9      6.5
##  control     other_black     6.7 0.132 317      6.4      7.0
## 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.46 0.190 317  -2.430  0.0200
## 
## assignment_f = other_white:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.16 0.185 317  -0.890  0.3700
## 
## assignment_f = other_black:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.52 0.195 317  -2.670  0.0100

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate    SE  df t.ratio p.value
##  self - other_white          -0.022 0.194 317  -0.110  1.0000
##  self - other_black           0.110 0.200 317   0.550  1.0000
##  other_white - other_black    0.132 0.197 317   0.670  1.0000
## 
## condition_f = control:
##  contrast                  estimate    SE  df t.ratio p.value
##  self - other_white           0.275 0.181 317   1.520  0.3900
##  self - other_black           0.050 0.185 317   0.270  1.0000
##  other_white - other_black   -0.224 0.183 317  -1.220  0.6700
## 
## P value adjustment: bonferroni method for 3 tests

Graphs

Qualifications - Ordinal

Regression

## formula: rank_qualifications ~ condition_f * assignment_f
## data:    black1_clean
## 
##  link  threshold nobs logLik  AIC    niter max.grad cond.H 
##  logit flexible  323  -117.85 249.70 8(2)  1.12e-11 4.3e+02
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)  
## condition_fcontrol                          -1.6777     0.6838   -2.45    0.014 *
## assignment_fother_white                     -0.3764     0.4987   -0.75    0.450  
## assignment_fother_black                     -0.6785     0.5539   -1.22    0.221  
## condition_fcontrol:assignment_fother_white  -0.0684     1.0570   -0.06    0.948  
## condition_fcontrol:assignment_fother_black   0.7342     1.0051    0.73    0.465  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 4|2    1.237      0.341    3.62
## 2|3    1.504      0.350    4.29
## (2 observations deleted due to missingness)

Graphs

Workload - Likert

## 
## Call:
## lm(formula = workload ~ condition_f * assignment_f, data = black1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.532 -1.867  0.133  1.800  3.291 
## 
## Coefficients:
##                                            Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                  4.2000     0.2910   14.43 <0.0000000000000002 ***
## condition_fcontrol                          -0.1138     0.3971   -0.29                0.77    
## assignment_fother_white                     -0.1623     0.4057   -0.40                0.69    
## assignment_fother_black                      0.3319     0.4181    0.79                0.43    
## condition_fcontrol:assignment_fother_white  -0.0573     0.5552   -0.10                0.92    
## condition_fcontrol:assignment_fother_black  -0.7090     0.5699   -1.24                0.21    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.1 on 317 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0151, Adjusted R-squared:  -0.000478 
## F-statistic: 0.969 on 5 and 317 DF,  p-value: 0.437

Estimated Marginal Means

##  condition_f assignment_f emmean    SE  df lower.CL upper.CL
##  race        self            4.2 0.291 317      3.6      4.8
##  control     self            4.1 0.270 317      3.6      4.6
##  race        other_white     4.0 0.283 317      3.5      4.6
##  control     other_white     3.9 0.266 317      3.3      4.4
##  race        other_black     4.5 0.300 317      3.9      5.1
##  control     other_black     3.7 0.277 317      3.2      4.3
## 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate   SE  df t.ratio p.value
##  race - control     0.11 0.40 317   0.290  0.7700
## 
## assignment_f = other_white:
##  contrast       estimate   SE  df t.ratio p.value
##  race - control     0.17 0.39 317   0.440  0.6600
## 
## assignment_f = other_black:
##  contrast       estimate   SE  df t.ratio p.value
##  race - control     0.82 0.41 317   2.010  0.0400

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate   SE  df t.ratio p.value
##  self - other_white            0.16 0.41 317   0.400  1.0000
##  self - other_black           -0.33 0.42 317  -0.790  1.0000
##  other_white - other_black    -0.49 0.41 317  -1.200  0.6900
## 
## condition_f = control:
##  contrast                  estimate   SE  df t.ratio p.value
##  self - other_white            0.22 0.38 317   0.580  1.0000
##  self - other_black            0.38 0.39 317   0.970  0.9900
##  other_white - other_black     0.16 0.38 317   0.410  1.0000
## 
## P value adjustment: bonferroni method for 3 tests

Graphs

Workload - Ordinal

## formula: rank_workload ~ condition_f * assignment_f
## data:    black1_clean
## 
##  link  threshold nobs logLik  AIC    niter max.grad cond.H 
##  logit flexible  323  -198.03 410.05 6(0)  8.39e-10 9.3e+01
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)    
## condition_fcontrol                          -1.9260     0.5149   -3.74  0.00018 ***
## assignment_fother_white                      0.3562     0.3886    0.92  0.35934    
## assignment_fother_black                     -0.1214     0.4024   -0.30  0.76299    
## condition_fcontrol:assignment_fother_white  -0.0518     0.6935   -0.07  0.94049    
## condition_fcontrol:assignment_fother_black   0.6879     0.6935    0.99  0.32122    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 3|2    0.240      0.282    0.85
## 2|4    3.192      0.436    7.32
## (2 observations deleted due to missingness)

Graphs

### Skills {.tabset} #### Summary

## 
## Call:
## lm(formula = skills ~ condition_f * assignment_f, data = black1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.483 -0.280  0.400  0.720  0.755 
## 
## Coefficients:
##                                            Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                  6.2800     0.1379   45.54 <0.0000000000000002 ***
## condition_fcontrol                           0.4097     0.1882    2.18                0.03 *  
## assignment_fother_white                     -0.0347     0.1922   -0.18                0.86    
## assignment_fother_black                     -0.0247     0.1981   -0.12                0.90    
## condition_fcontrol:assignment_fother_white  -0.1716     0.2631   -0.65                0.51    
## condition_fcontrol:assignment_fother_black  -0.0650     0.2701   -0.24                0.81    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.97 on 317 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0322, Adjusted R-squared:  0.0169 
## F-statistic: 2.11 on 5 and 317 DF,  p-value: 0.0642

Estimated Marginal Means

##  condition_f assignment_f emmean    SE  df lower.CL upper.CL
##  race        self            6.3 0.138 317      6.0      6.6
##  control     self            6.7 0.128 317      6.4      6.9
##  race        other_white     6.2 0.134 317      6.0      6.5
##  control     other_white     6.5 0.126 317      6.2      6.7
##  race        other_black     6.3 0.142 317      6.0      6.5
##  control     other_black     6.6 0.131 317      6.3      6.9
## 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.41 0.188 317  -2.180  0.0300
## 
## assignment_f = other_white:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.24 0.184 317  -1.300  0.1960
## 
## assignment_f = other_black:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.34 0.194 317  -1.780  0.0760

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate    SE  df t.ratio p.value
##  self - other_white           0.035 0.192 317   0.180  1.0000
##  self - other_black           0.025 0.198 317   0.120  1.0000
##  other_white - other_black   -0.010 0.195 317  -0.050  1.0000
## 
## condition_f = control:
##  contrast                  estimate    SE  df t.ratio p.value
##  self - other_white           0.206 0.180 317   1.150  0.7500
##  self - other_black           0.090 0.184 317   0.490  1.0000
##  other_white - other_black   -0.117 0.182 317  -0.640  1.0000
## 
## P value adjustment: bonferroni method for 3 tests

Graphs

### Fit {.tabset} #### Summary

## 
## Call:
## lm(formula = fit ~ condition_f * assignment_f, data = black1_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.094 -0.400  0.397  0.767  0.920 
## 
## Coefficients:
##                                            Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                  6.0800     0.1506   40.38 <0.0000000000000002 ***
## condition_fcontrol                           0.5234     0.2055    2.55               0.011 *  
## assignment_fother_white                      0.0143     0.2099    0.07               0.946    
## assignment_fother_black                      0.1966     0.2163    0.91               0.364    
## condition_fcontrol:assignment_fother_white  -0.3845     0.2873   -1.34               0.182    
## condition_fcontrol:assignment_fother_black  -0.4000     0.2949   -1.36               0.176    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 317 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0292, Adjusted R-squared:  0.0139 
## F-statistic:  1.9 on 5 and 317 DF,  p-value: 0.0932

Estimated Marginal Means

##  condition_f assignment_f emmean    SE  df lower.CL upper.CL
##  race        self            6.1 0.151 317      5.8      6.4
##  control     self            6.6 0.140 317      6.3      6.9
##  race        other_white     6.1 0.146 317      5.8      6.4
##  control     other_white     6.2 0.137 317      6.0      6.5
##  race        other_black     6.3 0.155 317      6.0      6.6
##  control     other_black     6.4 0.144 317      6.1      6.7
## 
## Confidence level used: 0.95

Pairwise comparisons: conditions across candidates

## assignment_f = self:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.52 0.205 317  -2.550  0.0100
## 
## assignment_f = other_white:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.14 0.201 317  -0.690  0.4900
## 
## assignment_f = other_black:
##  contrast       estimate    SE  df t.ratio p.value
##  race - control    -0.12 0.212 317  -0.580  0.5600

Pairwise comparisons: candidates across condition

## condition_f = race:
##  contrast                  estimate    SE  df t.ratio p.value
##  self - other_white           -0.01 0.210 317  -0.070  1.0000
##  self - other_black           -0.20 0.216 317  -0.910  1.0000
##  other_white - other_black    -0.18 0.213 317  -0.850  1.0000
## 
## condition_f = control:
##  contrast                  estimate    SE  df t.ratio p.value
##  self - other_white            0.37 0.196 317   1.890  0.1800
##  self - other_black            0.20 0.200 317   1.020  0.9300
##  other_white - other_black    -0.17 0.199 317  -0.840  1.0000
## 
## P value adjustment: bonferroni method for 3 tests

Graphs

Emotions

Cand. ID Rating
Bill W 9
Sam B 9
Fred W 2
Name ~ 4
Paula W 3
Jack W 5
Jane W 4

Positive Afffect

Regression

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: paff ~ assignment_f * condition_f * cand_f + (1 | pid)
##    Data: black1_cleanlong
## 
## REML criterion at convergence: 6944
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.476 -0.576  0.027  0.627  3.510 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.864    0.929   
##  Residual             0.966    0.983   
## Number of obs: 2237, groups:  pid, 322
## 
## Fixed effects:
##                                                         Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                               5.8720     0.1913  941.9573   30.69 < 0.0000000000000002 ***
## assignment_fother_white                                  -0.1022     0.2667  941.9573   -0.38              0.70168    
## assignment_fother_black                                  -0.0301     0.2758  951.4568   -0.11              0.91314    
## condition_fcontrol                                        0.1380     0.2617  948.8460    0.53              0.59809    
## cand_ffred                                               -2.8720     0.1966 1878.9874  -14.61 < 0.0000000000000002 ***
## cand_fjack                                               -1.2200     0.1966 1878.9874   -6.21  0.00000000067010285 ***
## cand_fjane                                               -1.6040     0.1966 1878.9874   -8.16  0.00000000000000061 ***
## cand_fpaula                                              -1.9840     0.1966 1878.9874  -10.09 < 0.0000000000000002 ***
## cand_fsam                                                 0.4400     0.1966 1878.9874    2.24              0.02534 *  
## cand_ftarg                                               -0.2560     0.1966 1878.9874   -1.30              0.19305    
## assignment_fother_white:condition_fcontrol                0.3897     0.3660  948.2948    1.06              0.28723    
## assignment_fother_black:condition_fcontrol                0.1988     0.3772  954.2225    0.53              0.59821    
## assignment_fother_white:cand_ffred                        0.3211     0.2741 1878.9873    1.17              0.24159    
## assignment_fother_black:cand_ffred                        0.6471     0.2834 1880.5903    2.28              0.02253 *  
## assignment_fother_white:cand_fjack                       -0.1838     0.2741 1878.9873   -0.67              0.50262    
## assignment_fother_black:cand_fjack                        0.3244     0.2840 1878.9873    1.14              0.25361    
## assignment_fother_white:cand_fjane                        0.1587     0.2741 1878.9873    0.58              0.56260    
## assignment_fother_black:cand_fjane                        0.4475     0.2840 1878.9873    1.58              0.11531    
## assignment_fother_white:cand_fpaula                       0.0670     0.2741 1878.9873    0.24              0.80685    
## assignment_fother_black:cand_fpaula                       0.5719     0.2834 1880.5903    2.02              0.04376 *  
## assignment_fother_white:cand_fsam                         0.0430     0.2741 1878.9873    0.16              0.87530    
## assignment_fother_black:cand_fsam                         0.0032     0.2834 1880.5903    0.01              0.99098    
## assignment_fother_white:cand_ftarg                       -1.3025     0.2741 1878.9873   -4.75  0.00000216508852615 ***
## assignment_fother_black:cand_ftarg                       -0.3092     0.2840 1878.9873   -1.09              0.27643    
## condition_fcontrol:cand_ffred                             1.0966     0.2694 1878.9873    4.07  0.00004879771701185 ***
## condition_fcontrol:cand_fjack                             0.2100     0.2690 1880.1516    0.78              0.43509    
## condition_fcontrol:cand_fjane                             0.4777     0.2694 1878.9873    1.77              0.07634 .  
## condition_fcontrol:cand_fpaula                            0.3636     0.2690 1880.1516    1.35              0.17655    
## condition_fcontrol:cand_fsam                             -0.3224     0.2690 1880.1516   -1.20              0.23074    
## condition_fcontrol:cand_ftarg                             0.0735     0.2694 1878.9873    0.27              0.78487    
## assignment_fother_white:condition_fcontrol:cand_ffred    -1.1219     0.3765 1878.9873   -2.98              0.00292 ** 
## assignment_fother_black:condition_fcontrol:cand_ffred    -1.4801     0.3879 1880.2622   -3.82              0.00014 ***
## assignment_fother_white:condition_fcontrol:cand_fjack    -0.1960     0.3762 1879.5824   -0.52              0.60242    
## assignment_fother_black:condition_fcontrol:cand_fjack    -0.4389     0.3884 1879.5459   -1.13              0.25862    
## assignment_fother_white:condition_fcontrol:cand_fjane    -0.6256     0.3765 1878.9873   -1.66              0.09678 .  
## assignment_fother_black:condition_fcontrol:cand_fjane    -0.8834     0.3886 1878.9873   -2.27              0.02313 *  
## assignment_fother_white:condition_fcontrol:cand_fpaula   -0.4772     0.3762 1879.5824   -1.27              0.20489    
## assignment_fother_black:condition_fcontrol:cand_fpaula   -1.0081     0.3876 1880.8243   -2.60              0.00937 ** 
## assignment_fother_white:condition_fcontrol:cand_fsam     -0.0915     0.3761 1881.6828   -0.24              0.80788    
## assignment_fother_black:condition_fcontrol:cand_fsam     -0.1921     0.3876 1880.8243   -0.50              0.62013    
## assignment_fother_white:condition_fcontrol:cand_ftarg    -0.2845     0.3765 1878.9873   -0.76              0.44994    
## assignment_fother_black:condition_fcontrol:cand_ftarg    -0.9686     0.3883 1879.4053   -2.49              0.01270 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated marginal means

Posthoc tests

Graphs (Black Candidates)

Graphs (All Candidates)

Negative Affect

Regression

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: naff ~ assignment_f * condition_f * cand_f + (1 | pid)
##    Data: black1_cleanlong
## 
## REML criterion at convergence: 6668
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.399 -0.606 -0.056  0.539  4.488 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.703    0.838   
##  Residual             0.862    0.928   
## Number of obs: 2237, groups:  pid, 322
## 
## Fixed effects:
##                                                         Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                               1.7480     0.1769  995.3959    9.88 < 0.0000000000000002 ***
## assignment_fother_white                                   0.2294     0.2466  995.3959    0.93               0.3526    
## assignment_fother_black                                   0.2139     0.2551 1005.3727    0.84               0.4020    
## condition_fcontrol                                       -0.2455     0.2421 1002.6317   -1.01               0.3108    
## cand_ffred                                                1.5520     0.1857 1878.8861    8.36 < 0.0000000000000002 ***
## cand_fjack                                                0.8320     0.1857 1878.8861    4.48      0.0000078973179 ***
## cand_fjane                                                1.0480     0.1857 1878.8861    5.64      0.0000000191859 ***
## cand_fpaula                                               1.2800     0.1857 1878.8861    6.89      0.0000000000074 ***
## cand_fsam                                                 0.1920     0.1857 1878.8861    1.03               0.3013    
## cand_ftarg                                                0.5160     0.1857 1878.8861    2.78               0.0055 ** 
## assignment_fother_white:condition_fcontrol               -0.0742     0.3384 1001.9595   -0.22               0.8264    
## assignment_fother_black:condition_fcontrol                0.0385     0.3489 1008.2973    0.11               0.9122    
## assignment_fother_white:cand_ffred                       -0.1595     0.2589 1878.8861   -0.62               0.5378    
## assignment_fother_black:cand_ffred                       -0.4202     0.2677 1880.5780   -1.57               0.1166    
## assignment_fother_white:cand_fjack                       -0.0207     0.2589 1878.8861   -0.08               0.9363    
## assignment_fother_black:cand_fjack                       -0.4668     0.2683 1878.8861   -1.74               0.0820 .  
## assignment_fother_white:cand_fjane                        0.1860     0.2589 1878.8861    0.72               0.4726    
## assignment_fother_black:cand_fjane                       -0.0784     0.2683 1878.8861   -0.29               0.7700    
## assignment_fother_white:cand_fpaula                      -0.1555     0.2589 1878.8861   -0.60               0.5482    
## assignment_fother_black:cand_fpaula                      -0.2802     0.2677 1880.5780   -1.05               0.2954    
## assignment_fother_white:cand_fsam                        -0.1618     0.2589 1878.8861   -0.63               0.5320    
## assignment_fother_black:cand_fsam                        -0.3751     0.2677 1880.5780   -1.40               0.1613    
## assignment_fother_white:cand_ftarg                        0.4048     0.2589 1878.8861    1.56               0.1181    
## assignment_fother_black:cand_ftarg                        0.1188     0.2683 1878.8861    0.44               0.6580    
## condition_fcontrol:cand_ffred                             0.2796     0.2544 1878.8861    1.10               0.2720    
## condition_fcontrol:cand_fjack                             0.1344     0.2540 1880.1150    0.53               0.5967    
## condition_fcontrol:cand_fjane                             0.3099     0.2544 1878.8861    1.22               0.2234    
## condition_fcontrol:cand_fpaula                            0.0347     0.2540 1880.1150    0.14               0.8913    
## condition_fcontrol:cand_fsam                             -0.0118     0.2540 1880.1150   -0.05               0.9631    
## condition_fcontrol:cand_ftarg                             0.4700     0.2544 1878.8861    1.85               0.0649 .  
## assignment_fother_white:condition_fcontrol:cand_ffred     0.1822     0.3556 1878.8861    0.51               0.6085    
## assignment_fother_black:condition_fcontrol:cand_ffred     0.4486     0.3663 1880.2361    1.22               0.2209    
## assignment_fother_white:condition_fcontrol:cand_fjack    -0.0508     0.3554 1879.5142   -0.14               0.8862    
## assignment_fother_black:condition_fcontrol:cand_fjack     0.4437     0.3668 1879.4757    1.21               0.2265    
## assignment_fother_white:condition_fcontrol:cand_fjane    -0.2727     0.3556 1878.8861   -0.77               0.4434    
## assignment_fother_black:condition_fcontrol:cand_fjane    -0.0266     0.3671 1878.8861   -0.07               0.9422    
## assignment_fother_white:condition_fcontrol:cand_fpaula    0.4272     0.3554 1879.5142    1.20               0.2295    
## assignment_fother_black:condition_fcontrol:cand_fpaula    0.5958     0.3661 1880.8294    1.63               0.1038    
## assignment_fother_white:condition_fcontrol:cand_fsam     -0.0161     0.3552 1881.6281   -0.05               0.9639    
## assignment_fother_black:condition_fcontrol:cand_fsam     -0.0451     0.3661 1880.8294   -0.12               0.9019    
## assignment_fother_white:condition_fcontrol:cand_ftarg    -0.0483     0.3556 1878.8861   -0.14               0.8919    
## assignment_fother_black:condition_fcontrol:cand_ftarg     0.3145     0.3667 1879.3316    0.86               0.3913    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated marginal means

Posthoc tests

Graphs (Black Candidates)

Graphs (All Candidates)