# Creat a data frame
tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.105 1.09 2.14 -0.0444
## 2 -1.02 -1.32 0.770 -0.382
## 3 0.259 -0.146 1.43 1.08
## 4 -1.51 -0.872 -1.11 0.0212
## 5 -1.33 -0.606 1.31 -1.23
## 6 -0.642 -0.418 0.331 -1.50
## 7 -1.56 -1.19 0.414 -0.0535
## 8 -0.576 -0.719 -1.89 0.860
## 9 0.495 -0.148 -0.185 -0.0537
## 10 1.46 -0.620 0.724 0.00985
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
# For reproducible work
set.seed(1234)
# Rescale each column
(df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
## [1] 0.5485509 1.0000000 0.6410150 0.5933291 0.6763798 0.6381797 0.7272041
## [8] 0.4090590 0.4589032 0.0000000
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.549 0.820 0.479 0.547
## 2 1 0.598 1 0.412
## 3 0.641 0.745 0.275 1
## 4 0.593 0 0 0.233
## 5 0.676 1 0.552 0.420
## 6 0.638 0.427 0.946 0.482
## 7 0.727 0.619 0.228 0.839
## 8 0.409 0.929 0.180 0.664
## 9 0.459 0.578 0.891 0
## 10 0 0.612 0.296 0.690
square <- function(var) {
# body
squared_value <- var * var
# return value
return(sqaured_value)
}
rescale <- function(x) {
# body
x <- (x - min(x, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(x, na.rm = TRUE))
# return values
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.549 0.820 0.479 0.547
## 2 1 0.598 1 0.412
## 3 0.641 0.745 0.275 1
## 4 0.593 0 0 0.233
## 5 0.676 1 0.552 0.420
## 6 0.638 0.427 0.946 0.482
## 7 0.727 0.619 0.228 0.839
## 8 0.409 0.929 0.180 0.664
## 9 0.459 0.578 0.891 0
## 10 0 0.612 0.296 0.690
detect_sign <- function(x) {
if(x > 0) {
message("Value is positive")
print(x)
} else if(x == 0) {
warning("Value is not positive, but it can be accepted")
print(x)
} else {
stop("Value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign()
## Value is positive
## [1] 3
0 %>% detect_sign()
## Warning in detect_sign(.): Value is not positive, but it can be accepted
## [1] 0
?mean
## starting httpd help server ... done
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ... )
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
Two types of functions