Load the necessary packages. Load and explore the data you want to use.
library(ggplot2)
library(ggpubr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
gap = read.csv("gapminderData5.csv")
str(gap)
## 'data.frame': 1704 obs. of 6 variables:
## $ country : chr "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
## $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
## $ continent: chr "Asia" "Asia" "Asia" "Asia" ...
## $ lifeExp : num 28.8 30.3 32 34 36.1 ...
## $ gdpPercap: num 779 821 853 836 740 ...
Create a subset of the data set.
gap07 = gap %>%
filter(year == 2007 & continent != "Oceania")
Create a basic scatter plot using ggplot.
ggplot(gap07, aes(x = gdpPercap, y = lifeExp, col = continent)) +
geom_point() + scale_x_log10("GDP per capita ($)") +
scale_y_continuous("Life Expectancy (yrs)") + ggtitle("GapMinder Data 2007")
Create a basic scatter plot using ggpubr.
ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007") +
xscale("log10", .format = TRUE)
Add labels to each point. Yikes.
ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007", label = "country", repel = TRUE) +
xscale("log10", .format = TRUE)
Or just select points. Better.
sel_countries = c("United States", "China", "Germany")
ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007", label = "country",
label.select = sel_countries, repel = TRUE) +
xscale("log10", .format = TRUE)
We can add a marginal histogram.
library(ggExtra)
p <- ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007") +
xscale("log10", .format = TRUE)
ggMarginal(p, type = "histogram")
Or a regression line.
ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007", add = "reg.line", conf.int = TRUE) +
xscale("log10", .format = TRUE)
Or correlations.
ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007", add = "reg.line", conf.int = TRUE) +
xscale("log10", .format = TRUE) +
stat_cor(aes(color = continent), method = "spearman")
Or regression line equations.
ggscatter(gap07, x = "gdpPercap", y = "lifeExp", col = "continent",
xlab = "GDP per capita ($)", ylab = "Life expectancy (yrs)",
main = "GapMinder Data 2007", add = "reg.line", conf.int = TRUE) +
xscale("log10", .format = TRUE) +
stat_regline_equation(aes(color = continent))
Create a basic histogram.
gghistogram(gap07, x = "lifeExp", main = "GapMinder Life Expectancy")
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
We can separate continents by color.
gghistogram(gap07, x = "lifeExp", fill = "continent",
main = "GapMinder Life Expectancy")
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
We can change the color palette.
gghistogram(gap07, x = "lifeExp", fill = "continent",
main = "GapMinder Life Expectancy", palette = "jco")
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
Create a basic density plot.
ggdensity(gap07, x = "lifeExp", fill = "continent",
main = "GapMinder Life Expectancy", palette = "jco")
Use ggpubr to create faceted plots.
ggdensity(gap07, x = "lifeExp", fill = "continent",
main = "GapMinder Life Expectancy", palette = "jco",
facet.by = "continent")
We can add reference lines (median life expectancy by continent) and a rug.
ggdensity(gap07, x = "lifeExp", fill = "continent",
main = "GapMinder Life Expectancy", palette = "jco",
facet.by = "continent",
add = "median", rug = TRUE)
Make a basic violin plot.
ggviolin(gap07, x = "continent", y = "lifeExp")
Color by continent, overlay a box and whisker plot, and add the observed values.
ggviolin(gap07, x = "continent", y = "lifeExp",
fill = "continent", palette = "jco",
add = c("boxplot", "jitter"),
ylab = "Life expectancy (yrs)")
You can also make them horizontal.
ggviolin(gap07, x = "continent", y = "lifeExp",
fill = "continent", palette = "jco",
add = c("boxplot", "jitter"),
ylab = "Life expectancy (yrs)",
rotate = TRUE)
Make bar plots by country (the height of the bar is the life expectancy).
ggbarplot(gap07,
x = "country",
y = "lifeExp")
Color by continent, rotate the country labels and reduce the font size, and add axis labels.
ggbarplot(gap07,
x = "country",
y = "lifeExp",
fill = "continent",
palette = "jco",
x.text.angle = 90,
ylab = "Life expectancy (yrs)",
xlab = "Country") +
font("x.text", size = 4)
Reorganize the plot.
ggbarplot(gap07,
x = "country",
y = "lifeExp",
fill = "continent",
palette = "jco",
sort.val = "desc",
sort.by.groups = FALSE,
x.text.angle = 90,
ylab = "Life expectancy (yrs)",
xlab = "Country") +
font("x.text", size = 4)
Create a dot plot.
ggdotchart(gap07,
x = "country",
y = "lifeExp",
color = "continent",
palette = "jco",
sorting = "descending",
rotate = TRUE,
group = "continent",
add = "segments",
ylab = "Life expectancy (yrs)",
xlab = "Country") +
font("y.text", size = 4)
Make a new subset of the data.
gap_sub = gap %>%
filter(continent %in% c("Asia", "Africa"),
year %in% c(1957, 1982, 2007))
Make a boxplot of the life expectancy values for the two continents. Colored them by each continent, and overlay jittered observations.
ggboxplot(gap_sub, x = "continent", y = "lifeExp",
ylab = "Years", col = "continent", add = "jitter")
Test to see whether the mean life expectancy differs between the two continents. This will use the Wilcoxon rank sum test by default.
ggboxplot(gap_sub, x = "continent", y = "lifeExp",
ylab = "Years", col = "continent", add = "jitter") +
stat_compare_means(label.y = 90)
You can use a t-test instead.
ggboxplot(gap_sub, x = "continent", y = "lifeExp",
ylab = "Years", col = "continent", add = "jitter") +
stat_compare_means(method = "t.test", label.y = 90)
We can facet the boxplots by year.
ggboxplot(gap_sub, x = "continent", y = "lifeExp",
ylab = "Years", col = "continent", add = "jitter", facet.by = "year") +
stat_compare_means(method = "t.test", label.y = 90)
We can also compare multiple groups.
ggboxplot(gap_sub, x = "year", y = "lifeExp") +
stat_compare_means(label.y = 80, method = "anova")
First, we have to make a list containing all the pairs of comparisons we want to test.
comps = list( c('1957', '1982'),
c('1957', '2007'),
c('1982', '2007'))
comps
## [[1]]
## [1] "1957" "1982"
##
## [[2]]
## [1] "1957" "2007"
##
## [[3]]
## [1] "1982" "2007"
Then, we can ask for t-tests between all the comparisons in the list.
ggboxplot(gap_sub, x = "year", y = "lifeExp", ylab = "Years") +
stat_compare_means(method = "t.test", comparisons = comps,
bracket.size = .6, size = 4)
We can also add the original comparison back in.
ggboxplot(gap_sub, x = "year", y = "lifeExp", ylab = "Years") +
stat_compare_means(method = "t.test", comparisons = comps,
bracket.size = .6, size = 4) +
stat_compare_means(label.y = 110, method = "anova")
We can also facet the plots by continent.
ggboxplot(gap_sub, x = "year", y = "lifeExp", ylab = "Years", facet.by = "continent") +
stat_compare_means(method = "t.test", comparisons = comps,
bracket.size = .6, size = 4) +
stat_compare_means(label.y = 110, method = "anova")
Another option is to choose one of the groups as the reference, and compare the other groups to this.
ggboxplot(gap_sub, x = "year", y = "lifeExp", ylab = "Years", facet.by = "continent") +
stat_compare_means(method = "t.test", ref.group = "1957") +
stat_compare_means(label.y = 110, method = "anova")
We can use asterisks to make this more coherent.
ggboxplot(gap_sub, x = "year", y = "lifeExp", ylab = "Years", facet.by = "continent") +
stat_compare_means(label = "p.signif", method = "t.test",
ref.group = "1957") +
stat_compare_means(label.y = 110, method = "anova")