# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("NFLX", "AAPL", "VRTX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "VRTX"
# weights
weights <- c(0.3, 0.3, .4)
weights
## [1] 0.3 0.3 0.4
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.3
## 2 NFLX 0.3
## 3 VRTX 0.4
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.154
## 2 2013-02-28 0.0490
## 3 2013-03-28 0.0670
## 4 2013-04-30 0.174
## 5 2013-05-31 0.0383
## 6 2013-06-28 -0.0599
## 7 2013-07-31 0.0824
## 8 2013-08-30 0.0450
## 9 2013-09-30 0.0226
## 10 2013-10-31 0.0159
## # ℹ 50 more rows
# Get market returns
market_returns_tbl <- tq_get("SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
# Combine market returns with portfolio returns
portfolio_market_returns_tbl <- portfolio_returns_tbl %>%
# Add market returns
mutate(market_returns = market_returns_tbl %>% pull(returns))
# 3 Calculating CAPM Beta ----
# A complete list of functions for performance_fun()
# tq_performance_fun_options()
portfolio_market_returns_tbl %>%
tq_performance(Ra = returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.39
# Figure 8.2 Scatter with regression line from ggplot ----
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns")
How sensitive is your portfolio to the market? Discuss in terms of the
beta coefficient. Does the plot confirm the beta coefficient you
calculated?
My portfolio is very sensitive to the market. as far a beta cofficient goes this means my sensitivity is very high. yes my ploy confirms my beta coeffient case it is 1.39 which is .39 above the market showing that its risk is quiet high compared to the market.