Demanda de bicicletas

Carguemos la data

bici<-read.csv("hour.csv")
head(bici)
##   instant     dteday season yr mnth hr holiday weekday workingday
## 1       1 2011-01-01      1  0    1  0       0       6          0
## 2       2 2011-01-01      1  0    1  1       0       6          0
## 3       3 2011-01-01      1  0    1  2       0       6          0
## 4       4 2011-01-01      1  0    1  3       0       6          0
## 5       5 2011-01-01      1  0    1  4       0       6          0
## 6       6 2011-01-01      1  0    1  5       0       6          0
##   weathersit temp  atemp  hum windspeed casual registered cnt
## 1          1 0.24 0.2879 0.81    0.0000      3         13  16
## 2          1 0.22 0.2727 0.80    0.0000      8         32  40
## 3          1 0.22 0.2727 0.80    0.0000      5         27  32
## 4          1 0.24 0.2879 0.75    0.0000      3         10  13
## 5          1 0.24 0.2879 0.75    0.0000      0          1   1
## 6          2 0.24 0.2576 0.75    0.0896      0          1   1
names(bici)
##  [1] "instant"    "dteday"     "season"     "yr"         "mnth"      
##  [6] "hr"         "holiday"    "weekday"    "workingday" "weathersit"
## [11] "temp"       "atemp"      "hum"        "windspeed"  "casual"    
## [16] "registered" "cnt"

Pregunta 1

¿Que mes es el que tiene la mayor demanda?

library(dplyr)
bici<-tbl_df(bici)
bici %>% group_by(yr,mnth) %>% summarise(sum(cnt))
## Source: local data frame [24 x 3]
## Groups: yr
## 
##    yr mnth sum(cnt)
## 1   0    1    38189
## 2   0    2    48215
## 3   0    3    64045
## 4   0    4    94870
## 5   0    5   135821
## 6   0    6   143512
## 7   0    7   141341
## 8   0    8   136691
## 9   0    9   127418
## 10  0   10   123511
## .. ..  ...      ...

Respuesta

El mes que tiene la mayor demanda es Junio