require(datasets)
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
require(magrittr)
## Loading required package: magrittr
work_profess <- read.csv(file = "http://www.personal.psu.edu/dlp/WFED540/pwces.csv", header = TRUE, sep=",")
glimpse(work_profess)
## Observations: 756
## Variables: 2
## $ gender (int) 1, 1, 0, 0, 0, 0, 1, NA, 0, 0, 1, 0, 1, 0, 1, 1, NA, 0...
## $ lifesat (int) 20, 18, 25, 7, 23, 25, 22, NA, 21, 29, 26, 26, 18, 28,...
summary (work_profess)
## gender lifesat
## Min. :0.0000 Min. : 5.0
## 1st Qu.:0.0000 1st Qu.:18.0
## Median :0.0000 Median :23.0
## Mean :0.4111 Mean :21.5
## 3rd Qu.:1.0000 3rd Qu.:25.0
## Max. :1.0000 Max. :30.0
## NA's :70 NA's :78
t.test(work_profess$lifesat~work_profess$gender)
##
## Welch Two Sample t-test
##
## data: work_profess$lifesat by work_profess$gender
## t = -1.3392, df = 578.22, p-value = 0.181
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.4771301 0.2794267
## sample estimates:
## mean in group 0 mean in group 1
## 21.23869 21.83755
some useful calculations
#number of male
Male<-nrow(filter(work_profess, gender == 0))
Male
## [1] 404
#number of female
Female<-nrow(filter(work_profess, gender == 1))
Female
## [1] 282
#calculating the mean of the male
M <- filter(work_profess, gender == 0, lifesat, na.rm=TRUE)
Male_mean <- (mean(M$lifesat))
Male_mean
## [1] 21.23869
#calculating the mean of the female
Fe <- filter(work_profess, gender == 1, lifesat, na.rm=TRUE)
Female_mean <- (mean(Fe$lifesat))
Female_mean
## [1] 21.83755