Mediante el uso de la geoestadÃstica, se requiere realizar un análisis detallado sobre el clima y mejores condiciones geográficas para la simebra y cultivo del mismo.
Se procede a cargar la información de la base de datos correspondiente a los datos completos del aguate:
Aguacates <- read_excel("C:/Users/User/Documents/Unidad3/Datos_Completos_Aguacate.xlsx")
head(Aguacates)
## # A tibble: 6 × 21
## id_arbol Latitude Longitude FORMATTED_DATE_TIME Psychro_Wet_Bulb_Tempe…¹
## <chr> <dbl> <dbl> <chr> <dbl>
## 1 1 2.38 -76.6 21/08/2019Â 9:22:57 a, m, 14.8
## 2 2 2.38 -76.6 21/08/2019Â 9:27:13 a, m, 11.6
## 3 3 2.38 -76.6 21/08/2019Â 9:36:36 a, m, 12.9
## 4 4 2.38 -76.6 21/08/2019Â 9:38:02 a, m, 14.1
## 5 5 2.38 -76.6 21/08/2019Â 9:39:38 a, m, 14.3
## 6 6 2.38 -76.6 21/08/2019Â 9:42:02 a, m, 14.2
## # ℹ abbreviated name: ¹​Psychro_Wet_Bulb_Temperature
## # ℹ 16 more variables: Station_Pressure <dbl>, Relative_Humidity <dbl>,
## # Crosswind <dbl>, Temperature <dbl>, Barometric_Pressure <dbl>,
## # Headwind <dbl>, Direction_True <dbl>, Direction_Mag <dbl>,
## # Wind_Speed <dbl>, Heat_Stress_Index <dbl>, Altitude <dbl>, Dew_Point <dbl>,
## # Density_Altitude <dbl>, Wind_Chill <dbl>,
## # Estado_Fenologico_Predominante <dbl>, Frutos_Afectados <dbl>
Posterior al cargue de la información de la base de datos es conveniente graficar en mapa la plantación de los aguacates:
require(leaflet)
leaflet() %>% addTiles() %>% addCircleMarkers(lng = Aguacates$Longitude,lat = Aguacates$Latitude,radius = 0.2,color = "blue")
Se convierten los datos en una variable regionalizada.
require(geoR)
geod_aguacate=as.geodata(Aguacates,coords.col = 3:2,data.col = 9)
## as.geodata: 18586 replicated data locations found.
## Consider using jitterDupCoords() for jittering replicated locations.
## WARNING: there are data at coincident or very closed locations, some of the geoR's functions may not work.
## Use function dup.coords() to locate duplicated coordinates.
## Consider using jitterDupCoords() for jittering replicated locations
plot(geod_aguacate)
Al encontrarse la situación de la gráfica geodata anterior, se procede a realizar el análisis con la variable temperatura, y la fecha 21 de agosto de 2019.
Aguacates$fecha <- as.Date(Aguacates$FORMATTED_DATE_TIME, format = "%d/%m/%Y")
Data_20 <- filter(Aguacates, fecha == "2020-10-01")
tablaAguacate <- (head(Data_20,5))
tablaAguacate %>%
kbl() %>%
kable_paper("hover",
full_width = F)
| id_arbol | Latitude | Longitude | FORMATTED_DATE_TIME | Psychro_Wet_Bulb_Temperature | Station_Pressure | Relative_Humidity | Crosswind | Temperature | Barometric_Pressure | Headwind | Direction_True | Direction_Mag | Wind_Speed | Heat_Stress_Index | Altitude | Dew_Point | Density_Altitude | Wind_Chill | Estado_Fenologico_Predominante | Frutos_Afectados | fecha |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2.393549 | -76.71124 | 01/10/2020Â 10:11:12 a, m, | 22.0 | 825.1 | 85.2 | 0.0 | 23.9 | 825.2 | 0.0 | 313 | 312 | 0.0 | 25.3 | 1696 | 21.3 | 2.504 | 23.9 | 717 | 0 | 2020-10-01 |
| 2 | 2.393573 | -76.71120 | 01/10/2020Â 10:11:12 a, m, | 21.4 | 825.3 | 84.0 | 0.0 | 23.5 | 825.2 | 0.0 | 317 | 317 | 0.0 | 24.8 | 1696 | 20.7 | 2.485 | 23.5 | 717 | 0 | 2020-10-01 |
| 3 | 2.393541 | -76.71113 | 01/10/2020Â 10:11:12 a, m, | 21.8 | 825.5 | 79.6 | 0.2 | 24.5 | 825.5 | 0.4 | 338 | 337 | 0.5 | 25.7 | 1694 | 20.8 | 2.518 | 24.5 | 717 | 0 | 2020-10-01 |
| 4 | 2.393503 | -76.71119 | 01/10/2020Â 10:11:12 a, m, | 22.8 | 825.4 | 77.6 | 0.4 | 25.9 | 825.4 | 0.2 | 299 | 299 | 0.5 | 28.1 | 1694 | 21.7 | 2.572 | 25.9 | 717 | 0 | 2020-10-01 |
| 5 | 2.393486 | -76.71121 | 01/10/2020Â 10:11:12 a, m, | 22.6 | 825.2 | 76.5 | 0.0 | 26.0 | 825.2 | 0.0 | 265 | 264 | 0.0 | 28.0 | 1696 | 21.5 | 2.575 | 25.9 | 717 | 0 | 2020-10-01 |
geod_aguacate=as.geodata(Data_20,coords.col = 3:2,data.col = 9)
plot(geod_aguacate)
### Semivariograma
library(leaflet)
leaflet() %>% addTiles() %>% addCircleMarkers(lng = Data_20$Longitude,lat = Data_20$Latitude,radius = 0.2,color = "blue")
#summary(dist(Data_20[,3:2]))
summary(dist(Data_20[,3:2]))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.712e-05 4.051e-04 6.408e-04 6.827e-04 9.178e-04 1.959e-03
#variograma=variog(geod_aguacate,option = "bin",uvec=seq(0,0.001,0.00002))
variograma=variog(geod_aguacate,option = "bin",uvec=seq(0,0.000917,9.178e-05))
## variog: computing omnidirectional variogram
datos.env=variog.mc.env(geod_aguacate,obj=variograma)
## variog.env: generating 99 simulations by permutating data values
## variog.env: computing the empirical variogram for the 99 simulations
## variog.env: computing the envelops
Graficando el variograma se obtiene lo siguiente:
plot(variograma)
lines(datos.env)
Se realiza el ajuste del modelo de semivarianza de la siguiente forma:
Usando el modelo exponencial:
ini.vals = expand.grid(seq(1.2,1.5,l=10), seq(0.0001,0.0008,l=10))
model_mco_exp=variofit(variograma, ini=ini.vals, cov.model="exponential", wei="npair", min="optim")
## variofit: covariance model used is exponential
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "1.5" "0" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 240018.669934895
Usando el modelo esférico:
model_mco_spe=variofit(variograma, ini=ini.vals, cov.model="spheric", fix.nug=TRUE, wei="npair", min="optim")
## variofit: covariance model used is spherical
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "1.5" "0" "0" "0.5"
## status "est" "est" "fix" "fix"
## loss value: 226841.340327613
Usando el modelo Gaussiano:
model_mco_gaus=variofit(variograma, ini=ini.vals, cov.model="gaussian", wei="npair", min="optim",nugget = 0)
## variofit: covariance model used is gaussian
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "1.5" "0" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 231440.514329651
Graficando todos los modelos se observa:
# Gráficando los módelos.
plot(variograma)
lines(model_mco_exp,col="blue")
lines(model_mco_gaus,col="red")
lines(model_mco_spe,col="green")
Mejorando la gráfica:
# Suponiendo que variograma, model_mco_exp, model_mco_gaus, y model_mco_spe están definidos
# Crear el gráfico del variograma
plot(variograma, main="Variograma y Modelos Ajustados",
xlab="Distancia", ylab="Semivarianza",
pch=19, col="black", cex=1.5)
# Agregar las lÃneas de los modelos ajustados
lines(model_mco_exp, col="blue", lwd=2, lty=1)
lines(model_mco_gaus, col="red", lwd=2, lty=2)
lines(model_mco_spe, col="green", lwd=2, lty=3)
# Agregar una leyenda
legend("topright", legend=c("Modelo Exponencial", "Modelo Gaussiano", "Modelo Esférico"),
col=c("blue", "red", "green"), lwd=2, lty=1:3, cex=0.8, bty="n")
# Mejorar la apariencia general del gráfico
par(mar=c(5, 5, 4, 2) + 0.1) # Ajustar márgenes
Los resultados de los modelos precedentes son:
model_mco_exp
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: exponential
## parameter estimates:
## tausq sigmasq phi
## 0.7849 2.2672 0.0001
## Practical Range with cor=0.05 for asymptotic range: 0.0003390645
##
## variofit: minimised weighted sum of squares = 3907.716
El exponencial es el que presenta menor suma de cuadrados.
model_mco_gaus
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: gaussian
## parameter estimates:
## tausq sigmasq phi
## 0.7594 2.2508 0.0001
## Practical Range with cor=0.05 for asymptotic range: 0.0002330932
##
## variofit: minimised weighted sum of squares = 5241.893
model_mco_spe
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: spherical
## fixed value for tausq = 0
## parameter estimates:
## sigmasq phi
## 2.9538 0.0000
## Practical Range with cor=0.05 for asymptotic range: 0
##
## variofit: minimised weighted sum of squares = 12203.46
c(min(Aguacates[,3]),
max(Aguacates[,3]),
min(Aguacates[,2]),
max(Aguacates[,2]))
## [1] -76.711799 -76.606710 2.316405 2.393634
Se continua con la creación de la malla:
#geodatos_grid=expand.grid( lon=seq(-76.711799,-76.606710,l=100),lat=seq(2.316405 ,2.393634 ,l=100))
#plot(geodatos_grid)
#points(geod_aguacate$coords,col="red")
datos_grid=expand.grid( lon=seq(-76.710,-76.712,l=100),lat=seq(2.3920 ,2.3937 ,l=100))
plot(datos_grid)
points(Data_20[,3:2],col="red")
geodatos_ko=krige.conv(geod_aguacate, loc=datos_grid,
krige= krige.control(nugget=0,trend.d="cte",
trend.l="cte",cov.pars=c(sigmasq=3.0186, phi=0.0001 )))
## krige.conv: model with constant mean
## krige.conv: Kriging performed using global neighbourhood
image(geodatos_ko, main="kriging Predict", xlab="East", ylab="North")
par(mfrow=c(1,2))
contour(geodatos_ko,main="kriging Predict", drawlabels=TRUE)
image(geodatos_ko, main="kriging Predict", xlab="East", ylab="North")