Chapter 15

Introduction

Creating Factors

x1 <- c("Dec", "Apr", "Jan", "Mar") 

month_levels <- c(
  "Jan", "Feb", "Mar", "Apr", "May", "Jun", 
  "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)

y1 <- factor(x1, levels = month_levels) 

f1 <- factor(x1, levels = unique(x1))

f2 <- x1 %>% factor() %>% fct_inorder()

General Social Survey

gss_cat
## # A tibble: 21,483 × 9
##     year marital         age race  rincome        partyid    relig denom tvhours
##    <int> <fct>         <int> <fct> <fct>          <fct>      <fct> <fct>   <int>
##  1  2000 Never married    26 White $8000 to 9999  Ind,near … Prot… Sout…      12
##  2  2000 Divorced         48 White $8000 to 9999  Not str r… Prot… Bapt…      NA
##  3  2000 Widowed          67 White Not applicable Independe… Prot… No d…       2
##  4  2000 Never married    39 White Not applicable Ind,near … Orth… Not …       4
##  5  2000 Divorced         25 White Not applicable Not str d… None  Not …       1
##  6  2000 Married          25 White $20000 - 24999 Strong de… Prot… Sout…      NA
##  7  2000 Never married    36 White $25000 or more Not str r… Chri… Not …       3
##  8  2000 Divorced         44 White $7000 to 7999  Ind,near … Prot… Luth…      NA
##  9  2000 Married          44 White $25000 or more Not str d… Prot… Other       0
## 10  2000 Married          47 White $25000 or more Strong re… Prot… Sout…       3
## # ℹ 21,473 more rows
gss_cat %>% count(race)
## # A tibble: 3 × 2
##   race      n
##   <fct> <int>
## 1 Other  1959
## 2 Black  3129
## 3 White 16395
ggplot(gss_cat, aes(race)) +
    geom_bar()

ggplot(gss_cat, aes(race)) +
  geom_bar() +
  scale_x_discrete(drop = FALSE)

Modifying Factor Order

Unordered Factor Levels

# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
    group_by(relig) %>%
    summarise(avg_tvhours = mean(tvhours, na.rm = TRUE))

# Plot
tvhours_by_relig %>%
    ggplot(aes(x = avg_tvhours, y = relig)) +
    geom_point()

Order factor Levels

tvhours_by_relig %>%
    ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
    geom_point() +
    
    # Labeling 
labs(y = NULL, x = "Mean Daily Hours Watching TV")

Moving a single level to the front

tvhours_by_relig %>%
    
    ggplot(aes(x = avg_tvhours, 
               y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
                   fct_relevel("Don't know"))) +
    geom_point() +
    
    # Labeling 
labs(y = NULL, x = "Mean Daily Hours Watching TV")

Modifying Factor Levels

gss_cat %>% distinct(race)
## # A tibble: 3 × 1
##   race 
##   <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
    
    # Rename Levels 
    mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
    select(race, race_rev) %>%
    filter(race == "Black")
## # A tibble: 3,129 × 2
##    race  race_rev        
##    <fct> <fct>           
##  1 Black African American
##  2 Black African American
##  3 Black African American
##  4 Black African American
##  5 Black African American
##  6 Black African American
##  7 Black African American
##  8 Black African American
##  9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one 
gss_cat %>%
    
    mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
    select(race, race_col) %>%
    filter(race != "White")
## # A tibble: 5,088 × 2
##    race  race_col
##    <fct> <fct>   
##  1 Black Minority
##  2 Black Minority
##  3 Black Minority
##  4 Other Minority
##  5 Black Minority
##  6 Other Minority
##  7 Black Minority
##  8 Other Minority
##  9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump Small Levels into Other Levels 
gss_cat %>% count(race)
## # A tibble: 3 × 2
##   race      n
##   <fct> <int>
## 1 Other  1959
## 2 Black  3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
##   race_lump
##   <fct>    
## 1 White    
## 2 Other

Chapter 16

Introduction

Creating Date/Times

From Strings

# From Strings 
"2024-6-16" %>% ymd()
## [1] "2024-06-16"
# From numbers
20221028 %>% ymd()
## [1] "2022-10-28"
"2024-6-16 4-41-30" %>% ymd_hms()
## [1] "2024-06-16 04:41:30 UTC"

From Individual Components

flights %>%
    select(year:day, hour, minute) %>%
    mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
##     year month   day  hour minute departure          
##    <int> <int> <int> <dbl>  <dbl> <dttm>             
##  1  2013     1     1     5     15 2013-01-01 05:15:00
##  2  2013     1     1     5     29 2013-01-01 05:29:00
##  3  2013     1     1     5     40 2013-01-01 05:40:00
##  4  2013     1     1     5     45 2013-01-01 05:45:00
##  5  2013     1     1     6      0 2013-01-01 06:00:00
##  6  2013     1     1     5     58 2013-01-01 05:58:00
##  7  2013     1     1     6      0 2013-01-01 06:00:00
##  8  2013     1     1     6      0 2013-01-01 06:00:00
##  9  2013     1     1     6      0 2013-01-01 06:00:00
## 10  2013     1     1     6      0 2013-01-01 06:00:00
## # ℹ 336,766 more rows

From Other Types

# From date to date-time
today() %>% as_datetime()
## [1] "2024-06-16 UTC"
# From date-time to date 
now() %>% as_date()
## [1] "2024-06-16"

Date-Time Components

Getting Components

date_time <- ymd_hms("2024-6-16 18-18")
## Warning: All formats failed to parse. No formats found.
date_time 
## [1] NA
year(date_time)
## [1] NA
month(date_time, label = TRUE, abbr = FALSE)
## [1] <NA>
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] NA
mday(date_time)
## [1] NA
wday(date_time, label = TRUE, abbr = FALSE)
## [1] <NA>
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
  make_datetime(year, month, day, time %/% 100, time %% 100)
}

flights_dt <- flights %>% 
  filter(!is.na(dep_time), !is.na(arr_time)) %>% 
  mutate(
    dep_time = make_datetime_100(year, month, day, dep_time),
    arr_time = make_datetime_100(year, month, day, arr_time),
    sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
    sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
  ) %>% 
  select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
    mutate(wday = wday(dep_time))
## # A tibble: 328,063 × 10
##    origin dest  dep_delay arr_delay dep_time            sched_dep_time     
##    <chr>  <chr>     <dbl>     <dbl> <dttm>              <dttm>             
##  1 EWR    IAH           2        11 2013-01-01 05:17:00 2013-01-01 05:15:00
##  2 LGA    IAH           4        20 2013-01-01 05:33:00 2013-01-01 05:29:00
##  3 JFK    MIA           2        33 2013-01-01 05:42:00 2013-01-01 05:40:00
##  4 JFK    BQN          -1       -18 2013-01-01 05:44:00 2013-01-01 05:45:00
##  5 LGA    ATL          -6       -25 2013-01-01 05:54:00 2013-01-01 06:00:00
##  6 EWR    ORD          -4        12 2013-01-01 05:54:00 2013-01-01 05:58:00
##  7 EWR    FLL          -5        19 2013-01-01 05:55:00 2013-01-01 06:00:00
##  8 LGA    IAD          -3       -14 2013-01-01 05:57:00 2013-01-01 06:00:00
##  9 JFK    MCO          -3        -8 2013-01-01 05:57:00 2013-01-01 06:00:00
## 10 LGA    ORD          -2         8 2013-01-01 05:58:00 2013-01-01 06:00:00
## # ℹ 328,053 more rows
## # ℹ 4 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>,
## #   wday <dbl>
flights_dt %>%
    transmute(wday = wday(dep_time, label = TRUE)) %>%
    ggplot(aes(wday)) +
    geom_bar()

Rounding

# Floor_date for rounding down 
flights_dt %>%
    mutate(week = floor_date(dep_time, "month")) %>%
    select(dep_time, week) %>%
    sample_n(10)
## # A tibble: 10 × 2
##    dep_time            week               
##    <dttm>              <dttm>             
##  1 2013-07-31 14:58:00 2013-07-01 00:00:00
##  2 2013-08-16 18:21:00 2013-08-01 00:00:00
##  3 2013-12-20 08:32:00 2013-12-01 00:00:00
##  4 2013-02-01 09:46:00 2013-02-01 00:00:00
##  5 2013-04-04 06:29:00 2013-04-01 00:00:00
##  6 2013-06-14 09:14:00 2013-06-01 00:00:00
##  7 2013-01-10 14:49:00 2013-01-01 00:00:00
##  8 2013-04-13 15:44:00 2013-04-01 00:00:00
##  9 2013-12-10 09:32:00 2013-12-01 00:00:00
## 10 2013-08-18 22:45:00 2013-08-01 00:00:00
# Ceiling_date for rounding up
flights_dt %>%
    mutate(week = ceiling_date(dep_time, "month")) %>%
    select(dep_time, week) %>%
    sample_n(10)
## # A tibble: 10 × 2
##    dep_time            week               
##    <dttm>              <dttm>             
##  1 2013-03-17 16:36:00 2013-04-01 00:00:00
##  2 2013-06-05 05:54:00 2013-07-01 00:00:00
##  3 2013-04-10 00:41:00 2013-05-01 00:00:00
##  4 2013-03-28 14:04:00 2013-04-01 00:00:00
##  5 2013-03-14 12:41:00 2013-04-01 00:00:00
##  6 2013-08-24 08:33:00 2013-09-01 00:00:00
##  7 2013-02-08 11:41:00 2013-03-01 00:00:00
##  8 2013-09-21 07:05:00 2013-10-01 00:00:00
##  9 2013-07-28 21:29:00 2013-08-01 00:00:00
## 10 2013-12-25 17:20:00 2014-01-01 00:00:00

Setting Components

flights_dt %>%
    mutate(dep_hour = update(dep_time, yday = 1)) %>%
    select(dep_time, dep_hour) %>%
    sample_n(10)
## # A tibble: 10 × 2
##    dep_time            dep_hour           
##    <dttm>              <dttm>             
##  1 2013-11-17 17:26:00 2013-01-01 17:26:00
##  2 2013-04-16 17:16:00 2013-01-01 17:16:00
##  3 2013-04-19 10:45:00 2013-01-01 10:45:00
##  4 2013-08-11 16:02:00 2013-01-01 16:02:00
##  5 2013-10-19 16:30:00 2013-01-01 16:30:00
##  6 2013-02-24 16:56:00 2013-01-01 16:56:00
##  7 2013-08-17 06:01:00 2013-01-01 06:01:00
##  8 2013-07-05 21:22:00 2013-01-01 21:22:00
##  9 2013-11-21 13:00:00 2013-01-01 13:00:00
## 10 2013-01-18 15:04:00 2013-01-01 15:04:00

Times Spans

Durations

dseconds(15)
## [1] "15s"
dminutes(10)
## [1] "600s (~10 minutes)"
dhours(c(12, 24))
## [1] "43200s (~12 hours)" "86400s (~1 days)"
ddays(0:5)
## [1] "0s"                "86400s (~1 days)"  "172800s (~2 days)"
## [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)
## [1] "1814400s (~3 weeks)"
dyears(1)
## [1] "31557600s (~1 years)"
# Adding, Multiplying, and Subtracting Durations 
2 * dyears(1)
## [1] "63115200s (~2 years)"
dyears(1) + dweeks(12) + dhours(15)
## [1] "38869200s (~1.23 years)"
tomorrow <- today() + ddays(1)
last_year <- today() - dyears(1)

Periods

seconds(15)
## [1] "15S"
minutes(10)
## [1] "10M 0S"
hours(c(12, 24))
## [1] "12H 0M 0S" "24H 0M 0S"
days(7)
## [1] "7d 0H 0M 0S"
months(1:6)
## [1] "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S" "4m 0d 0H 0M 0S"
## [5] "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S"
weeks(3)
## [1] "21d 0H 0M 0S"
years(1) 
## [1] "1y 0m 0d 0H 0M 0S"
# Adding and Multiplying Periods
10 * (months(6) + days(1)) 
## [1] "60m 10d 0H 0M 0S"
days(50) + hours(25) + minutes(2)
## [1] "50d 25H 2M 0S"
flights_dt %>% 
  filter(arr_time < dep_time)
## # A tibble: 10,633 × 9
##    origin dest  dep_delay arr_delay dep_time            sched_dep_time     
##    <chr>  <chr>     <dbl>     <dbl> <dttm>              <dttm>             
##  1 EWR    BQN           9        -4 2013-01-01 19:29:00 2013-01-01 19:20:00
##  2 JFK    DFW          59        NA 2013-01-01 19:39:00 2013-01-01 18:40:00
##  3 EWR    TPA          -2         9 2013-01-01 20:58:00 2013-01-01 21:00:00
##  4 EWR    SJU          -6       -12 2013-01-01 21:02:00 2013-01-01 21:08:00
##  5 EWR    SFO          11       -14 2013-01-01 21:08:00 2013-01-01 20:57:00
##  6 LGA    FLL         -10        -2 2013-01-01 21:20:00 2013-01-01 21:30:00
##  7 EWR    MCO          41        43 2013-01-01 21:21:00 2013-01-01 20:40:00
##  8 JFK    LAX          -7       -24 2013-01-01 21:28:00 2013-01-01 21:35:00
##  9 EWR    FLL          49        28 2013-01-01 21:34:00 2013-01-01 20:45:00
## 10 EWR    FLL          -9       -14 2013-01-01 21:36:00 2013-01-01 21:45:00
## # ℹ 10,623 more rows
## # ℹ 3 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>
flights_dt <- flights_dt %>% 
  mutate(
    overnight = arr_time < dep_time,
    arr_time = arr_time + days(overnight * 1),
    sched_arr_time = sched_arr_time + days(overnight * 1)
  )

flights_dt %>% 
  filter(overnight, arr_time < dep_time) 
## # A tibble: 0 × 10
## # ℹ 10 variables: origin <chr>, dest <chr>, dep_delay <dbl>, arr_delay <dbl>,
## #   dep_time <dttm>, sched_dep_time <dttm>, arr_time <dttm>,
## #   sched_arr_time <dttm>, air_time <dbl>, overnight <lgl>

Intervals

years(1) / days(1)
## [1] 365.25
next_year <- today() + years(1)
(today() %--% next_year) / ddays(1)
## [1] 365
(today() %--% next_year) %/% days(1)
## [1] 365