x1 <- c("Dec", "Apr", "Jan", "Mar")
month_levels <- c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)
y1 <- factor(x1, levels = month_levels)
f1 <- factor(x1, levels = unique(x1))
f2 <- x1 %>% factor() %>% fct_inorder()
# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(avg_tvhours = mean(tvhours, na.rm = TRUE))
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# Rename Levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump Small Levels into Other Levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From Strings
"2024-6-16" %>% ymd()
## [1] "2024-06-16"
# From numbers
20221028 %>% ymd()
## [1] "2022-10-28"
"2024-6-16 4-41-30" %>% ymd_hms()
## [1] "2024-06-16 04:41:30 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2024-06-16 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2024-06-16"
date_time <- ymd_hms("2024-6-16 18-18")
## Warning: All formats failed to parse. No formats found.
date_time
## [1] NA
year(date_time)
## [1] NA
month(date_time, label = TRUE, abbr = FALSE)
## [1] <NA>
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] NA
mday(date_time)
## [1] NA
wday(date_time, label = TRUE, abbr = FALSE)
## [1] <NA>
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
mutate(wday = wday(dep_time))
## # A tibble: 328,063 × 10
## origin dest dep_delay arr_delay dep_time sched_dep_time
## <chr> <chr> <dbl> <dbl> <dttm> <dttm>
## 1 EWR IAH 2 11 2013-01-01 05:17:00 2013-01-01 05:15:00
## 2 LGA IAH 4 20 2013-01-01 05:33:00 2013-01-01 05:29:00
## 3 JFK MIA 2 33 2013-01-01 05:42:00 2013-01-01 05:40:00
## 4 JFK BQN -1 -18 2013-01-01 05:44:00 2013-01-01 05:45:00
## 5 LGA ATL -6 -25 2013-01-01 05:54:00 2013-01-01 06:00:00
## 6 EWR ORD -4 12 2013-01-01 05:54:00 2013-01-01 05:58:00
## 7 EWR FLL -5 19 2013-01-01 05:55:00 2013-01-01 06:00:00
## 8 LGA IAD -3 -14 2013-01-01 05:57:00 2013-01-01 06:00:00
## 9 JFK MCO -3 -8 2013-01-01 05:57:00 2013-01-01 06:00:00
## 10 LGA ORD -2 8 2013-01-01 05:58:00 2013-01-01 06:00:00
## # ℹ 328,053 more rows
## # ℹ 4 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>,
## # wday <dbl>
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# Floor_date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-07-31 14:58:00 2013-07-01 00:00:00
## 2 2013-08-16 18:21:00 2013-08-01 00:00:00
## 3 2013-12-20 08:32:00 2013-12-01 00:00:00
## 4 2013-02-01 09:46:00 2013-02-01 00:00:00
## 5 2013-04-04 06:29:00 2013-04-01 00:00:00
## 6 2013-06-14 09:14:00 2013-06-01 00:00:00
## 7 2013-01-10 14:49:00 2013-01-01 00:00:00
## 8 2013-04-13 15:44:00 2013-04-01 00:00:00
## 9 2013-12-10 09:32:00 2013-12-01 00:00:00
## 10 2013-08-18 22:45:00 2013-08-01 00:00:00
# Ceiling_date for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-03-17 16:36:00 2013-04-01 00:00:00
## 2 2013-06-05 05:54:00 2013-07-01 00:00:00
## 3 2013-04-10 00:41:00 2013-05-01 00:00:00
## 4 2013-03-28 14:04:00 2013-04-01 00:00:00
## 5 2013-03-14 12:41:00 2013-04-01 00:00:00
## 6 2013-08-24 08:33:00 2013-09-01 00:00:00
## 7 2013-02-08 11:41:00 2013-03-01 00:00:00
## 8 2013-09-21 07:05:00 2013-10-01 00:00:00
## 9 2013-07-28 21:29:00 2013-08-01 00:00:00
## 10 2013-12-25 17:20:00 2014-01-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-11-17 17:26:00 2013-01-01 17:26:00
## 2 2013-04-16 17:16:00 2013-01-01 17:16:00
## 3 2013-04-19 10:45:00 2013-01-01 10:45:00
## 4 2013-08-11 16:02:00 2013-01-01 16:02:00
## 5 2013-10-19 16:30:00 2013-01-01 16:30:00
## 6 2013-02-24 16:56:00 2013-01-01 16:56:00
## 7 2013-08-17 06:01:00 2013-01-01 06:01:00
## 8 2013-07-05 21:22:00 2013-01-01 21:22:00
## 9 2013-11-21 13:00:00 2013-01-01 13:00:00
## 10 2013-01-18 15:04:00 2013-01-01 15:04:00
dseconds(15)
## [1] "15s"
dminutes(10)
## [1] "600s (~10 minutes)"
dhours(c(12, 24))
## [1] "43200s (~12 hours)" "86400s (~1 days)"
ddays(0:5)
## [1] "0s" "86400s (~1 days)" "172800s (~2 days)"
## [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)
## [1] "1814400s (~3 weeks)"
dyears(1)
## [1] "31557600s (~1 years)"
# Adding, Multiplying, and Subtracting Durations
2 * dyears(1)
## [1] "63115200s (~2 years)"
dyears(1) + dweeks(12) + dhours(15)
## [1] "38869200s (~1.23 years)"
tomorrow <- today() + ddays(1)
last_year <- today() - dyears(1)
seconds(15)
## [1] "15S"
minutes(10)
## [1] "10M 0S"
hours(c(12, 24))
## [1] "12H 0M 0S" "24H 0M 0S"
days(7)
## [1] "7d 0H 0M 0S"
months(1:6)
## [1] "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S" "4m 0d 0H 0M 0S"
## [5] "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S"
weeks(3)
## [1] "21d 0H 0M 0S"
years(1)
## [1] "1y 0m 0d 0H 0M 0S"
# Adding and Multiplying Periods
10 * (months(6) + days(1))
## [1] "60m 10d 0H 0M 0S"
days(50) + hours(25) + minutes(2)
## [1] "50d 25H 2M 0S"
flights_dt %>%
filter(arr_time < dep_time)
## # A tibble: 10,633 × 9
## origin dest dep_delay arr_delay dep_time sched_dep_time
## <chr> <chr> <dbl> <dbl> <dttm> <dttm>
## 1 EWR BQN 9 -4 2013-01-01 19:29:00 2013-01-01 19:20:00
## 2 JFK DFW 59 NA 2013-01-01 19:39:00 2013-01-01 18:40:00
## 3 EWR TPA -2 9 2013-01-01 20:58:00 2013-01-01 21:00:00
## 4 EWR SJU -6 -12 2013-01-01 21:02:00 2013-01-01 21:08:00
## 5 EWR SFO 11 -14 2013-01-01 21:08:00 2013-01-01 20:57:00
## 6 LGA FLL -10 -2 2013-01-01 21:20:00 2013-01-01 21:30:00
## 7 EWR MCO 41 43 2013-01-01 21:21:00 2013-01-01 20:40:00
## 8 JFK LAX -7 -24 2013-01-01 21:28:00 2013-01-01 21:35:00
## 9 EWR FLL 49 28 2013-01-01 21:34:00 2013-01-01 20:45:00
## 10 EWR FLL -9 -14 2013-01-01 21:36:00 2013-01-01 21:45:00
## # ℹ 10,623 more rows
## # ℹ 3 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>
flights_dt <- flights_dt %>%
mutate(
overnight = arr_time < dep_time,
arr_time = arr_time + days(overnight * 1),
sched_arr_time = sched_arr_time + days(overnight * 1)
)
flights_dt %>%
filter(overnight, arr_time < dep_time)
## # A tibble: 0 × 10
## # ℹ 10 variables: origin <chr>, dest <chr>, dep_delay <dbl>, arr_delay <dbl>,
## # dep_time <dttm>, sched_dep_time <dttm>, arr_time <dttm>,
## # sched_arr_time <dttm>, air_time <dbl>, overnight <lgl>
years(1) / days(1)
## [1] 365.25
next_year <- today() + years(1)
(today() %--% next_year) / ddays(1)
## [1] 365
(today() %--% next_year) %/% days(1)
## [1] 365