MODELO ESTIMADO

options(scipen = 999999)
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(equatiomatic) 
library(mlbench) 
data(BostonHousing)
modelo_boston<-lm(formula = medv~.,data=BostonHousing)
extract_eq(modelo_boston,wrap = TRUE)

\[ \begin{aligned} \operatorname{medv} &= \alpha + \beta_{1}(\operatorname{crim}) + \beta_{2}(\operatorname{zn}) + \beta_{3}(\operatorname{indus})\ + \\ &\quad \beta_{4}(\operatorname{chas}_{\operatorname{1}}) + \beta_{5}(\operatorname{nox}) + \beta_{6}(\operatorname{rm}) + \beta_{7}(\operatorname{age})\ + \\ &\quad \beta_{8}(\operatorname{dis}) + \beta_{9}(\operatorname{rad}) + \beta_{10}(\operatorname{tax}) + \beta_{11}(\operatorname{ptratio})\ + \\ &\quad \beta_{12}(\operatorname{b}) + \beta_{13}(\operatorname{lstat}) + \epsilon \end{aligned} \]

coeftest(modelo_boston)
## 
## t test of coefficients:
## 
##                 Estimate   Std. Error  t value              Pr(>|t|)    
## (Intercept)  36.45948839   5.10345881   7.1441    0.0000000000032834 ***
## crim         -0.10801136   0.03286499  -3.2865             0.0010868 ** 
## zn            0.04642046   0.01372746   3.3816             0.0007781 ***
## indus         0.02055863   0.06149569   0.3343             0.7382881    
## chas1         2.68673382   0.86157976   3.1184             0.0019250 ** 
## nox         -17.76661123   3.81974371  -4.6513    0.0000042456438076 ***
## rm            3.80986521   0.41792525   9.1161 < 0.00000000000000022 ***
## age           0.00069222   0.01320978   0.0524             0.9582293    
## dis          -1.47556685   0.19945473  -7.3980    0.0000000000006013 ***
## rad           0.30604948   0.06634644   4.6129    0.0000050705290227 ***
## tax          -0.01233459   0.00376054  -3.2800             0.0011116 ** 
## ptratio      -0.95274723   0.13082676  -7.2825    0.0000000000013088 ***
## b             0.00931168   0.00268596   3.4668             0.0005729 ***
## lstat        -0.52475838   0.05071528 -10.3471 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

PRONOSTICO E INTERVALO CONFIANZA 1

Usando “predict”

library(stargazer)
#Data para la predicción X'm
X_m<-data.frame(crim=0.05,zn=15,indus=2,chas="0",nox=0.004,
                       rm=5,age=85,dis=5.56,rad=2,tax=300,ptratio=17,b=0.00005,lstat=5)
# Intervalos de Confianza del 95% y del 99%
confidense<-c(0.95,0.99)
#Predicción usando predict
predict(object = modelo_boston,
           newdata = X_m,
           interval = "prediction",
           level = confidense,
          se.fit =TRUE)->predicciones
rownames(predicciones$fit)<-as.character(confidense*100)
colnames(predicciones$fit)<-c("Ym","Li","Ls")
stargazer(predicciones$fit,
          title = "Pronósticos e intervalos de confianza",
          type = "html")
## 
## <table style="text-align:center"><caption><strong>Pronósticos e intervalos de confianza</strong></caption>
## <tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td>Ym</td><td>Li</td><td>Ls</td></tr>
## <tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">95</td><td>26.116</td><td>15.558</td><td>36.673</td></tr>
## <tr><td style="text-align:left">99</td><td>26.116</td><td>12.221</td><td>40.010</td></tr>
## <tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr></table>

Usando libreria “forecast”

library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(kableExtra)
#Data para la predicción X'm
X_m<-data.frame(crim=0.05,zn=15,indus=2,chas="0",nox=0.004,
                       rm=5,age=85,dis=5.56,rad=2,tax=300,ptratio=17,b=0.00005,lstat=5)
#Nivel de confianza para el intervalo de confianza
confidense<-c(0.95,0.99)

#Realizando el pronóstico con forecast
pronosticos<-forecast(object = modelo_boston,
         level = confidense,
         newdata = X_m,ts = FALSE)
kable(pronosticos,
      caption = "Pronóstico e intervalos de confianza:",
      digits = 2,format = "html")
Pronóstico e intervalos de confianza:
Point Forecast Lo 95 Hi 95 Lo 99 Hi 99
26.12 15.56 36.67 12.22 40.01

SIMULACION

#Funciones para la desigualdad de Theil.
Um<-function(pronosticado,observado){
  library(DescTools)
  ((mean(pronosticado)-mean(observado))^2)/MSE(pronosticado,observado) 
}
#Variance Proportion.
Us<-function(pronosticado,observado){
  library(DescTools)
  ((sd(pronosticado)-sd(observado))^2)/MSE(pronosticado,observado)
}
#Covariance Proportion.
Uc<-function(pronosticado,observado){
  library(DescTools)
  (2*(1-cor(pronosticado,observado))*sd(pronosticado)*sd(observado))/MSE(pronosticado,observado)}
#Coeficiente U de Theil.
THEIL_U<-function(pronosticado,observado){
   library(DescTools)
  RMSE(pronosticado,observado)/(sqrt(mean(pronosticado^2))+sqrt(mean(observado^2)))
}

Usando como datos de entrenamiento el 80% de los datos originales.

Considere 1000 replicas.

Utilice la semilla aleatoria de 50.

#Script de Simulación versión 1.
options(scipen = 999999) 
library(dplyr) 
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
## 
##     group_rows
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(DescTools) 
## 
## Attaching package: 'DescTools'
## The following objects are masked from 'package:caret':
## 
##     MAE, RMSE
## The following object is masked from 'package:forecast':
## 
##     BoxCox
library(stargazer) 
set.seed(50) 
numero_de_muestras<-1000
proporcion_entrenamiento<-0.8
# Creación de las muestras, aquí usamos la variable endógena que definimos con anterioridad 
muestras<- BostonHousing$medv %>%
  createDataPartition(p = proporcion_entrenamiento,
                      times = numero_de_muestras,
                      list = TRUE)
#Listas vacias para la simulación
Modelos_Entrenamiento<-vector(mode = "list",
                              length = numero_de_muestras)
Pronostico_Prueba<-vector(mode = "list",
                              length = numero_de_muestras)
Resultados_Performance_data_entrenamiento<-vector(mode = "list",
                              length = numero_de_muestras)
Resultados_Performance<-vector(mode = "list",
                              length = numero_de_muestras)
# Estimar los modelos de cada muestra y sus medidas de desempeño predictivo
for(j in 1:numero_de_muestras){
Datos_Entrenamiento<- BostonHousing[muestras[[j]], ]
Datos_Prueba<- BostonHousing[-muestras[[j]], ]
Modelos_Entrenamiento[[j]]<-lm(formula = medv~.,data=Datos_Entrenamiento)
Pronostico_Prueba[[j]]<-Modelos_Entrenamiento[[j]]%>% predict(Datos_Prueba)
Resultados_Performance_data_entrenamiento[[j]]<-data.frame( 
            R2 = R2(Modelos_Entrenamiento[[j]]$fitted.values,
                    Datos_Entrenamiento$medv),
            RMSE = RMSE(Modelos_Entrenamiento[[j]]$fitted.values,
                        Datos_Entrenamiento$medv),
            MAE = MAE(Modelos_Entrenamiento[[j]]$fitted.values,
                      Datos_Entrenamiento$medv),
            MAPE= MAPE(Modelos_Entrenamiento[[j]]$fitted.values,
                       Datos_Entrenamiento$medv)*100,
            THEIL=TheilU(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv,type = 1),
            Um=Um(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv),
            Us=Us(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv),
            Uc=Uc(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv)
            )
Resultados_Performance[[j]]<-data.frame( 
            R2 = R2(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            RMSE = RMSE(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            MAE = MAE(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            MAPE= MAPE(Pronostico_Prueba[[j]], Datos_Prueba$medv)*100,
            THEIL=TheilU(Pronostico_Prueba[[j]], Datos_Prueba$medv,
                         type = 1), # También se puede usar la función que creamos: THEIL_U
            Um=Um(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            Us=Us(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            Uc=Uc(Pronostico_Prueba[[j]], Datos_Prueba$medv)
            )
}

RESULTADOS DE SIMULACION

bind_rows(Resultados_Performance_data_entrenamiento) %>% 
  stargazer(title = "Medidas de Performance Datos del Modelo",
            type = "html",
            digits = 3)
## 
## <table style="text-align:center"><caption><strong>Medidas de Performance Datos del Modelo</strong></caption>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Statistic</td><td>N</td><td>Mean</td><td>St. Dev.</td><td>Min</td><td>Max</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">R2</td><td>1,000</td><td>0.743</td><td>0.013</td><td>0.713</td><td>0.794</td></tr>
## <tr><td style="text-align:left">RMSE</td><td>1,000</td><td>4.653</td><td>0.141</td><td>4.177</td><td>4.948</td></tr>
## <tr><td style="text-align:left">MAE</td><td>1,000</td><td>3.265</td><td>0.095</td><td>2.905</td><td>3.512</td></tr>
## <tr><td style="text-align:left">MAPE</td><td>1,000</td><td>16.387</td><td>0.464</td><td>14.813</td><td>17.691</td></tr>
## <tr><td style="text-align:left">THEIL</td><td>1,000</td><td>0.096</td><td>0.003</td><td>0.087</td><td>0.102</td></tr>
## <tr><td style="text-align:left">Um</td><td>1,000</td><td>0.000</td><td>0.000</td><td>0</td><td>0</td></tr>
## <tr><td style="text-align:left">Us</td><td>1,000</td><td>0.074</td><td>0.004</td><td>0.058</td><td>0.085</td></tr>
## <tr><td style="text-align:left">Uc</td><td>1,000</td><td>0.928</td><td>0.004</td><td>0.918</td><td>0.945</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr></table>
bind_rows(Resultados_Performance) %>% 
  stargazer(title = "Medidas de Performance Simulación",
            type = "html",
            digits = 3)
## 
## <table style="text-align:center"><caption><strong>Medidas de Performance Simulación</strong></caption>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Statistic</td><td>N</td><td>Mean</td><td>St. Dev.</td><td>Min</td><td>Max</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">R2</td><td>1,000</td><td>0.723</td><td>0.056</td><td>0.452</td><td>0.840</td></tr>
## <tr><td style="text-align:left">RMSE</td><td>1,000</td><td>4.862</td><td>0.575</td><td>3.465</td><td>6.961</td></tr>
## <tr><td style="text-align:left">MAE</td><td>1,000</td><td>3.411</td><td>0.281</td><td>2.633</td><td>4.492</td></tr>
## <tr><td style="text-align:left">MAPE</td><td>1,000</td><td>17.197</td><td>1.618</td><td>12.875</td><td>23.137</td></tr>
## <tr><td style="text-align:left">THEIL</td><td>1,000</td><td>0.101</td><td>0.012</td><td>0.073</td><td>0.148</td></tr>
## <tr><td style="text-align:left">Um</td><td>1,000</td><td>0.011</td><td>0.016</td><td>0.000</td><td>0.205</td></tr>
## <tr><td style="text-align:left">Us</td><td>1,000</td><td>0.081</td><td>0.066</td><td>0.00000</td><td>0.333</td></tr>
## <tr><td style="text-align:left">Uc</td><td>1,000</td><td>0.918</td><td>0.066</td><td>0.667</td><td>1.010</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr></table>

CON LOS DATOS DEÑ EJERCICIO DE ESTIMADORES HAC:

MODELO ESTIMADO

#Cargamos los datos.
 load("C:/Users/Usuario/Downloads/DATA+")

#Estimamos el modelo.
options(scipen = 999999)
library(lmtest)
library(stargazer)
library(equatiomatic) 
modelo_cigarrillos <-lm(formula = cigs~.,data=data)
extract_eq(modelo_cigarrillos,wrap = TRUE)

\[ \begin{aligned} \operatorname{cigs} &= \alpha + \beta_{1}(\operatorname{educ}) + \beta_{2}(\operatorname{cigpric}) + \beta_{3}(\operatorname{white})\ + \\ &\quad \beta_{4}(\operatorname{age}) + \beta_{5}(\operatorname{income}) + \beta_{6}(\operatorname{restaurn}) + \beta_{7}(\operatorname{lincome})\ + \\ &\quad \beta_{8}(\operatorname{agesq}) + \beta_{9}(\operatorname{lcigpric}) + \epsilon \end{aligned} \]

coeftest(modelo_cigarrillos)
## 
## t test of coefficients:
## 
##                   Estimate     Std. Error t value     Pr(>|t|)    
## (Intercept)  340.804374604  260.015587269  1.3107     0.190334    
## educ          -0.494780616    0.168180198 -2.9420     0.003356 ** 
## cigpric        2.002267667    1.492831189  1.3413     0.180220    
## white         -0.531051635    1.460721806 -0.3636     0.716287    
## age            0.778359013    0.160555612  4.8479 0.0000015001 ***
## income        -0.000046194    0.000133491 -0.3460     0.729402    
## restaurn      -2.644241351    1.129998690 -2.3400     0.019528 *  
## lincome        1.404061178    1.708165841  0.8220     0.411340    
## agesq         -0.009150353    0.001749292 -5.2309 0.0000002158 ***
## lcigpric    -115.273464445   85.424315195 -1.3494     0.177585    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

PRONOSTICP E INTERVALO DE CONFIANZA

SIMULACION 2

#Script de Simulación versión 2
options(scipen = 999999) 
library(dplyr) 
library(caret)
library(DescTools) 
library(stargazer) 
set.seed(50) 
numero_de_muestras2<-500
proporcion_entrenamiento2<-0.75
# Creación de las muestras, aquí usamos la variable endógena que definimos con anterioridad 
muestras2<- data$cigs %>%
  createDataPartition(p = proporcion_entrenamiento2,
                      times = numero_de_muestras2,
                      list = TRUE)
#Listas vacias para la simulación
Modelos_Entrenamiento2<-vector(mode = "list",
                              length = numero_de_muestras2)
Pronostico_Prueba2<-vector(mode = "list",
                              length = numero_de_muestras2)
Resultados_Performance_data_entrenamiento2<-vector(mode = "list",
                              length = numero_de_muestras2)
Resultados_Performance2<-vector(mode = "list",
                              length = numero_de_muestras2)
# Estimar los modelos de cada muestra y sus medidas de desempeño predictivo
for(j in 1:numero_de_muestras2){
Datos_Entrenamiento2<- data[muestras2[[j]], ]
Datos_Prueba2<- data[-muestras2[[j]], ]
Modelos_Entrenamiento2[[j]]<-lm(formula = cigs~.,data=Datos_Entrenamiento2)
Pronostico_Prueba2[[j]]<-Modelos_Entrenamiento2[[j]]%>% predict(Datos_Prueba2)
Resultados_Performance_data_entrenamiento2[[j]]<-data.frame( 
            R2 = R2(Modelos_Entrenamiento2[[j]]$fitted.values,
                    Datos_Entrenamiento2$cigs),
            RMSE = RMSE(Modelos_Entrenamiento2[[j]]$fitted.values,
                        Datos_Entrenamiento2$cigs),
            MAE = MAE(Modelos_Entrenamiento2[[j]]$fitted.values,
                      Datos_Entrenamiento2$cigs),
            MAPE= MAPE(Modelos_Entrenamiento2[[j]]$fitted.values,
                       Datos_Entrenamiento2$cigs)*100,
            THEIL=TheilU(Modelos_Entrenamiento2[[j]]$fitted.values,
                         Datos_Entrenamiento2$cigs,type = 1),
            Um=Um(Modelos_Entrenamiento2[[j]]$fitted.values,
                         Datos_Entrenamiento$cigs),
            Us=Us(Modelos_Entrenamiento2[[j]]$fitted.values,
                         Datos_Entrenamiento2$cigs),
            Uc=Uc(Modelos_Entrenamiento2[[j]]$fitted.values,
                         Datos_Entrenamiento2$cigs)
            )
Resultados_Performance2[[j]]<-data.frame( 
            R2 = R2(Pronostico_Prueba2[[j]], Datos_Prueba2$cigs),
            RMSE = RMSE(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs),
            MAE = MAE(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs),
            MAPE= MAPE(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs)*100,
            THEIL=TheilU(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs,
                         type = 1), # También se puede usar la función que creamos: THEIL_U
            Um=Um(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs),
            Us=Us(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs),
            Uc=Uc(Pronostico_Prueba2[[j]],  Datos_Prueba2$cigs)
            )
}
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA
## Warning in mean.default(observado): argument is not numeric or logical:
## returning NA

RESULTADOS DE SIMULACION 2

bind_rows(Resultados_Performance_data_entrenamiento2) %>% 
  stargazer(title = "Medidas de Performance Datos del Modelo",
            type = "html",
            digits = 3)
## 
## <table style="text-align:center"><caption><strong>Medidas de Performance Datos del Modelo</strong></caption>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Statistic</td><td>N</td><td>Mean</td><td>St. Dev.</td><td>Min</td><td>Max</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">R2</td><td>500</td><td>0.058</td><td>0.007</td><td>0.040</td><td>0.083</td></tr>
## <tr><td style="text-align:left">RMSE</td><td>500</td><td>13.304</td><td>0.198</td><td>12.629</td><td>13.828</td></tr>
## <tr><td style="text-align:left">MAE</td><td>500</td><td>10.562</td><td>0.133</td><td>10.068</td><td>10.969</td></tr>
## <tr><td style="text-align:left">MAPE</td><td>500</td><td>Inf.000</td><td></td><td>Inf</td><td>Inf</td></tr>
## <tr><td style="text-align:left">THEIL</td><td>500</td><td>0.522</td><td>0.006</td><td>0.505</td><td>0.541</td></tr>
## <tr><td style="text-align:left">Us</td><td>500</td><td>0.613</td><td>0.020</td><td>0.554</td><td>0.669</td></tr>
## <tr><td style="text-align:left">Uc</td><td>500</td><td>0.389</td><td>0.020</td><td>0.332</td><td>0.448</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr></table>
bind_rows(Resultados_Performance2) %>% 
  stargazer(title = "Medidas de Performance Simulación",
            type = "html",
            digits = 3)
## 
## <table style="text-align:center"><caption><strong>Medidas de Performance Simulación</strong></caption>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Statistic</td><td>N</td><td>Mean</td><td>St. Dev.</td><td>Min</td><td>Max</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">R2</td><td>500</td><td>0.039</td><td>0.018</td><td>0.002</td><td>0.099</td></tr>
## <tr><td style="text-align:left">RMSE</td><td>500</td><td>13.479</td><td>0.595</td><td>11.734</td><td>15.361</td></tr>
## <tr><td style="text-align:left">MAE</td><td>500</td><td>10.728</td><td>0.290</td><td>9.834</td><td>11.626</td></tr>
## <tr><td style="text-align:left">MAPE</td><td>500</td><td>Inf.000</td><td></td><td>Inf</td><td>Inf</td></tr>
## <tr><td style="text-align:left">THEIL</td><td>500</td><td>0.528</td><td>0.013</td><td>0.491</td><td>0.564</td></tr>
## <tr><td style="text-align:left">Um</td><td>500</td><td>0.002</td><td>0.003</td><td>0.00000</td><td>0.021</td></tr>
## <tr><td style="text-align:left">Us</td><td>500</td><td>0.597</td><td>0.051</td><td>0.476</td><td>0.751</td></tr>
## <tr><td style="text-align:left">Uc</td><td>500</td><td>0.405</td><td>0.051</td><td>0.253</td><td>0.529</td></tr>
## <tr><td colspan="6" style="border-bottom: 1px solid black"></td></tr></table>