library(psych) # for the describe() command
library(ggplot2) # to visualize our results
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
library(expss) # for the cross_cases() command
## Loading required package: maditr
##
## To select columns from data: columns(mtcars, mpg, vs:carb)
##
## Attaching package: 'maditr'
## The following object is masked from 'package:base':
##
## sort_by
##
## Attaching package: 'expss'
## The following object is masked from 'package:ggplot2':
##
## vars
library(car) # for the leveneTest() command
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:expss':
##
## recode
## The following object is masked from 'package:psych':
##
## logit
library(afex) # to run the ANOVA and plot results
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'lme4'
## The following object is masked from 'package:expss':
##
## dummy
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - Get and set global package options with: afex_options()
## - Set sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
##
## Attaching package: 'afex'
## The following object is masked from 'package:lme4':
##
## lmer
library(emmeans) # for posthoc tests
## Welcome to emmeans.
## Caution: You lose important information if you filter this package's results.
## See '? untidy'
# import the dataset you cleaned previously
# this will be the dataset you'll use throughout the rest of the semester
# use ARC data
d <- read.csv(file="Data/mydatafinal.csv", header=T)
# new code! this adds a column with a number for each row. it makes it easier when we drop outliers later
d$row_id <- 1:nrow(d)
Note: You can chose to run either a one-way ANOVA (a single IV with more than 3 levels) or a two-way/factorial ANOVA (at least two IVs) for the homework. You will need to specify your hypothesis and customize your code based on the choice you make. I will run both versions of the test here for illustrative purposes.
Two-Way: We predict that there will significant effects of gender and race/ethnicity on maturity, as measured by the perceived maturity scale (MoA). We also predict that race/ethnicity and gender will interact and that women of color will report significantly higher maturity than men of color or white men and women.
# you only need to check the variables you're using in the current analysis
# although you checked them previously, it's always a good idea to look them over again and be sure that everything is correct
str(d)
## 'data.frame': 3182 obs. of 8 variables:
## $ ResponseId : chr "R_BJN3bQqi1zUMid3" "R_2TGbiBXmAtxywsD" "R_12G7bIqN2wB2N65" "R_39pldNoon8CePfP" ...
## $ gender : chr "f" "m" "m" "f" ...
## $ race_rc : chr "white" "white" "white" "other" ...
## $ moa_maturity: num 3.67 3.33 3.67 3 3.67 ...
## $ idea : num 3.75 3.88 3.75 3.75 3.5 ...
## $ belong : num 2.8 4.2 3.6 4 3.4 4.2 3.9 3.6 2.9 2.5 ...
## $ socmeduse : int 47 23 34 35 37 13 37 43 37 29 ...
## $ row_id : int 1 2 3 4 5 6 7 8 9 10 ...
d$ResponseId <- as.factor(d$ResponseId)
# make our categorical variables factors
d$gender <- as.factor(d$gender)
d$race_rc <- as.factor(d$race_rc)
d$row_id <- as.factor(d$row_id)
# we're going to recode our race/ethnicity variable into two groups: poc and white
table(d$race_rc)
##
## asian black hispanic multiracial nativeamer other
## 210 249 286 293 12 97
## white
## 2026
d$poc[d$race_rc == "asian"] <- "poc"
d$poc[d$race_rc == "black"] <- "poc"
d$poc[d$race_rc == "mideast"] <- "poc"
d$poc[d$race_rc == "multiracial"] <- "poc"
d$poc[d$race_rc == "other"] <- "poc"
d$poc[d$race_rc == "prefer_not"] <- NA
d$poc[d$race_rc == "white"] <- "white"
table(d$poc)
##
## poc white
## 849 2026
d$poc <- as.factor(d$poc)
# you can use the describe() command on an entire dataframe (d) or just on a single variable
describe(d$moa_maturity)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 3146 3.59 0.43 3.67 3.65 0.49 1 4 3 -1.2 1.87 0.01
# we'll use the describeBy() command to view skew and kurtosis across our IVs
describeBy(d$moa_maturity, group = d$gender)
##
## Descriptive statistics by group
## group: f
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 2303 3.61 0.42 3.67 3.67 0.49 1 4 3 -1.22 1.94 0.01
## ------------------------------------------------------------
## group: m
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 785 3.54 0.46 3.67 3.6 0.49 1.33 4 2.67 -1.16 1.65 0.02
## ------------------------------------------------------------
## group: nb
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 3.5 0.4 3.33 3.53 0.49 2.33 4 1.67 -0.5 -0.13 0.05
describeBy(d$moa_maturity, group = d$poc)
##
## Descriptive statistics by group
## group: poc
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 833 3.6 0.44 3.67 3.67 0.49 1.33 4 2.67 -1.25 1.72 0.02
## ------------------------------------------------------------
## group: white
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 2014 3.58 0.42 3.67 3.63 0.49 1 4 3 -1.15 2 0.01
describeBy(d$moa_maturity, group = d$race_rc)
##
## Descriptive statistics by group
## group: asian
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 207 3.61 0.44 3.67 3.66 0.49 1.33 4 2.67 -1.29 2.58 0.03
## ------------------------------------------------------------
## group: black
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 242 3.63 0.46 3.67 3.7 0.49 1.67 4 2.33 -1.5 2.42 0.03
## ------------------------------------------------------------
## group: hispanic
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 281 3.63 0.45 3.67 3.71 0.49 1.67 4 2.33 -1.39 1.87 0.03
## ------------------------------------------------------------
## group: multiracial
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 288 3.59 0.44 3.67 3.66 0.49 2 4 2 -1.11 0.9 0.03
## ------------------------------------------------------------
## group: nativeamer
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 10 3.6 0.62 4 3.71 0 2.33 4 1.67 -1.02 -0.71 0.2
## ------------------------------------------------------------
## group: other
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 96 3.58 0.44 3.67 3.62 0.49 2 4 2 -0.86 0.27 0.04
## ------------------------------------------------------------
## group: white
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 2014 3.58 0.42 3.67 3.63 0.49 1 4 3 -1.15 2 0.01
# also use histograms to examine your continuous variable
hist(d$moa_maturity)
# and cross_cases() to examine your categorical variables
cross_cases(d, gender, poc)
| poc | ||
|---|---|---|
| poc | white | |
| gender | ||
| f | 630 | 1480 |
| m | 205 | 508 |
| nb | 14 | 38 |
| #Total cases | 849 | 2026 |
table(d$gender)
##
## f m nb
## 2332 792 54
cross_cases(d, gender, poc)
| poc | ||
|---|---|---|
| poc | white | |
| gender | ||
| f | 630 | 1480 |
| m | 205 | 508 |
| nb | 14 | 38 |
| #Total cases | 849 | 2026 |
# our number of small nb participants is going to hurt us for the two-way anova, but it should be okay for the one-way anova
# so we'll create a new dataframe for the two-way analysis and call it d2
d2 <- subset(d, gender != "nb")
d2$gender <- droplevels(d2$gender)
# to double-check any changes we made
cross_cases(d2, gender, poc)
| poc | ||
|---|---|---|
| poc | white | |
| gender | ||
| f | 630 | 1480 |
| m | 205 | 508 |
| #Total cases | 835 | 1988 |
# use the leveneTest() command from the car package to test homogeneity of variance
# uses the 'formula' setup: formula is y~x1*x2, where y is our DV and x1 is our first IV and x2 is our second IV
leveneTest(moa_maturity~gender, data = d)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 3.9717 0.01894 *
## 3139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(moa_maturity~gender*poc, data = d2)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 2.7238 0.0428 *
## 2791
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# use this commented out section only if you need to remove outliers
# to drop a single outlier, remove the # at the beginning of the line and use this code:
d <- subset(d, row_id!=c(1108))
# to drop multiple outliers, remove the # at the beginning of the line and use this code:
# d <- subset(d, row_id!=c(1108) & row_id!=c(602) & row_id!=c(220))
# use the lm() command to run the regression
# formula is y~x1*x2 + c, where y is our DV, x1 is our first IV, x2 is our second IV, and c is our covariate
reg_model <- lm(moa_maturity ~ gender, data = d) #for one-way
reg_model2 <- lm(moa_maturity ~ gender*poc, data = d2) #for two-way
# Cook's distance
plot(reg_model, 4)
# Residuals vs Leverage
plot(reg_model, 5)
# Cook's distance
plot(reg_model2, 4)
# Residuals vs Leverage
plot(reg_model2, 5)
Our cell sizes are very unbalanced. A small sample size for one of the levels of our variable limits our power and increases our Type II error rate.
Levene’s test is significant for our three-level gender variable. We are ignoring this and continuing with the analysis anyway, but in the real world this is something we would have to correct for.
We identified and removed a single outlier.
aov_model <- aov_ez(data = d,
id = "ResponseId",
between = c("gender"),
dv = "moa_maturity",
anova_table = list(es = "pes"))
## Warning: Missing values for 40 ID(s), which were removed before analysis:
## R_0dNdRm6ew3q0NTL, R_10AR1BhlKdqLzd9, R_10OTSb3qKpsUpgY, R_10u6G17JITY60xl, R_1Cl7ONhtvJCpssB, R_1EiEtm2ZNl7dQHY, R_1EihKePhUenEL9L, R_1F3eLUtnUqenxLi, R_1f9Fkx8HFLhhUaI, R_1n1I7EcP36r128r, ... [showing first 10 only]
## Below the first few rows (in wide format) of the removed cases with missing data.
## ResponseId gender .
## # 17 R_0dNdRm6ew3q0NTL f NA
## # 45 R_10AR1BhlKdqLzd9 f NA
## # 55 R_10OTSb3qKpsUpgY m NA
## # 63 R_10u6G17JITY60xl f NA
## # 132 R_1Cl7ONhtvJCpssB f NA
## # 213 R_1EiEtm2ZNl7dQHY f NA
## Contrasts set to contr.sum for the following variables: gender
aov_model2 <- aov_ez(data = d2,
id = "ResponseId",
between = c("gender","poc"),
dv = "moa_maturity",
anova_table = list(es = "pes"))
## Warning: Missing values for 329 ID(s), which were removed before analysis:
## R_0AnPM5x7wfwX1bf, R_0Cj1m8a7TIGCjwl, R_0CJcqtXWnOo8uBz, R_0dNdRm6ew3q0NTL, R_10AR1BhlKdqLzd9, R_10OTSb3qKpsUpgY, R_10u6G17JITY60xl, R_10uS04Ubp4IwfYE, R_125z5zdnETjS0jd, R_126hlQCkLu4yrOw, ... [showing first 10 only]
## Below the first few rows (in wide format) of the removed cases with missing data.
## ResponseId gender poc .
## # 7 R_0AnPM5x7wfwX1bf m <NA> 4.000000
## # 11 R_0Cj1m8a7TIGCjwl f <NA> 4.000000
## # 12 R_0CJcqtXWnOo8uBz m <NA> 3.666667
## # 17 R_0dNdRm6ew3q0NTL f <NA> NA
## # 45 R_10AR1BhlKdqLzd9 f <NA> NA
## # 54 R_10OTSb3qKpsUpgY m <NA> NA
## Contrasts set to contr.sum for the following variables: gender, poc
Effect size cutoffs from Cohen (1988):
nice(aov_model)
## Anova Table (Type 3 tests)
##
## Response: moa_maturity
## Effect df MSE F pes p.value
## 1 gender 2, 3138 0.19 8.70 *** .006 <.001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
nice(aov_model2)
## Anova Table (Type 3 tests)
##
## Response: moa_maturity
## Effect df MSE F pes p.value
## 1 gender 1, 2791 0.18 9.40 ** .003 .002
## 2 poc 1, 2791 0.18 1.47 <.001 .226
## 3 gender:poc 1, 2791 0.18 0.17 <.001 .684
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(aov_model, x = "gender")
afex_plot(aov_model2, x = "gender", trace = "poc")
afex_plot(aov_model2, x = "poc", trace = "gender")
# Run Posthoc Tests (Two-Way)
Only run posthocs if the test is significant! E.g., only run the posthoc tests on gender if there is a main effect for gender.
```r
emmeans(aov_model, specs="gender", adjust="tukey")
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
## gender emmean SE df lower.CL upper.CL
## f 3.610 0.008999 3138 3.588 3.631
## m 3.541 0.015410 3138 3.504 3.577
## nb 3.500 0.058755 3138 3.360 3.640
##
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 3 estimates
pairs(emmeans(aov_model, specs="gender", adjust="tukey"))
## contrast estimate SE df t.ratio p.value
## f - m 0.0691 0.0178 3138 3.870 0.0003
## f - nb 0.1096 0.0594 3138 1.844 0.1555
## m - nb 0.0406 0.0607 3138 0.668 0.7823
##
## P value adjustment: tukey method for comparing a family of 3 estimates
emmeans(aov_model2, specs="poc", adjust="tukey")
## NOTE: Results may be misleading due to involvement in interactions
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
## poc emmean SE df lower.CL upper.CL
## poc 3.59 0.0174 2791 3.55 3.63
## white 3.57 0.0111 2791 3.54 3.59
##
## Results are averaged over the levels of: gender
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 2 estimates
pairs(emmeans(aov_model2, specs="poc", adjust="tukey"))
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df t.ratio p.value
## poc - white 0.0249 0.0206 2791 1.210 0.2262
##
## Results are averaged over the levels of: gender
emmeans(aov_model2, specs="gender", by="poc", adjust="sidak")
## poc = poc:
## gender emmean SE df lower.CL upper.CL
## f 3.62 0.0173 2791 3.58 3.66
## m 3.56 0.0302 2791 3.50 3.63
##
## poc = white:
## gender emmean SE df lower.CL upper.CL
## f 3.60 0.0112 2791 3.58 3.63
## m 3.53 0.0191 2791 3.49 3.57
##
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 2 estimates
pairs(emmeans(aov_model2, specs="poc", by="gender", adjust="sidak"))
## gender = f:
## contrast estimate SE df t.ratio p.value
## poc - white 0.0166 0.0206 2791 0.804 0.4212
##
## gender = m:
## contrast estimate SE df t.ratio p.value
## poc - white 0.0333 0.0357 2791 0.933 0.3507
emmeans(aov_model2, specs="poc", by="gender", adjust="sidak")
## gender = f:
## poc emmean SE df lower.CL upper.CL
## poc 3.62 0.0173 2791 3.58 3.66
## white 3.60 0.0112 2791 3.58 3.63
##
## gender = m:
## poc emmean SE df lower.CL upper.CL
## poc 3.56 0.0302 2791 3.50 3.63
## white 3.53 0.0191 2791 3.49 3.57
##
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 2 estimates
pairs(emmeans(aov_model2, specs="poc", by="gender", adjust="sidak"))
## gender = f:
## contrast estimate SE df t.ratio p.value
## poc - white 0.0166 0.0206 2791 0.804 0.4212
##
## gender = m:
## contrast estimate SE df t.ratio p.value
## poc - white 0.0333 0.0357 2791 0.933 0.3507
To test our hypothesis that gender and race would impact maturity and would interact significantly, we used a two-way/factorial ANOVA. Our data met most of the assumptions of the test, although our data was unbalanced, with many more women participating in our survey (n = 2332) than men (n = 792).
As predicted, we found a significant main effect for gender, F(1,2791) = 9.40, p < .001, ηp2 .017 (small effect size; Cohen, 1988). As predicted, women reported significantly more maturity than men. Contrary to our expectations, we did not find a significant main effect for race (p = .226).
Lastly, we found a significant interaction between gender and race (see Figure 2), F(1,2791) = 0.17, p = .064, ηp2 < .001 (trivial effect size; Cohen, 1988). When comparing by race, women of color (M = 3.62, SE = .02) reported significantly more maturity than men of color (M = 3.56, SE = .03; p < .001), as did white women (M = 3.60, SE = .01) compared to white men (M = 3.53, SE = .02; p < .001). When comparing by gender, women of color reported significantly more maturity than white women (p = .002), while men of color and white men reported similar levels of maturity (p = .351).
References
Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic.