#Read in the data/ load libraries
getwd()
## [1] "C:/GEOG 5680/module10/module10"
list.files()
## [1] "enrollmentForecast.csv" "module10.Rmd" "module10.Rproj"
enf = read.csv("enrollmentForecast.csv")
library(ggplot2)
#look at the data structure
str(enf)
## 'data.frame': 29 obs. of 5 variables:
## $ YEAR : int 1 2 3 4 5 6 7 8 9 10 ...
## $ ROLL : int 5501 5945 6629 7556 8716 9369 9920 10167 11084 12504 ...
## $ UNEM : num 8.1 7 7.3 7.5 7 6.4 6.5 6.4 6.3 7.7 ...
## $ HGRAD: int 9552 9680 9731 11666 14675 15265 15484 15723 16501 16890 ...
## $ INC : int 1923 1961 1979 2030 2112 2192 2235 2351 2411 2475 ...
summary(enf)
## YEAR ROLL UNEM HGRAD INC
## Min. : 1 Min. : 5501 Min. : 5.700 Min. : 9552 Min. :1923
## 1st Qu.: 8 1st Qu.:10167 1st Qu.: 7.000 1st Qu.:15723 1st Qu.:2351
## Median :15 Median :14395 Median : 7.500 Median :17203 Median :2863
## Mean :15 Mean :12707 Mean : 7.717 Mean :16528 Mean :2729
## 3rd Qu.:22 3rd Qu.:14969 3rd Qu.: 8.200 3rd Qu.:18266 3rd Qu.:3127
## Max. :29 Max. :16081 Max. :10.100 Max. :19800 Max. :3345
#Make scatterplots of ROLL against the other variables
ggplot(enf, aes(x = UNEM, y = ROLL)) +
geom_point() +
geom_smooth(method = "lm", col = "red") +
labs(title = "Scatterplot of Enrollment (ROLL) vs Unemployment Rate (UNEM)",
x = "Unemployment Rate (UNEM)", y = "Enrollment (ROLL)")
## `geom_smooth()` using formula = 'y ~ x'

ggplot(enf, aes(x = HGRAD, y = ROLL)) +
geom_point() +
geom_smooth(method = "lm", col = "pink") +
labs(title = "Scatterplot of Enrollment (ROLL) vs
High School Graduates (HGRAD)", x = "High School Graduates (HGRAD)",
y = "Enrollment (ROLL)")
## `geom_smooth()` using formula = 'y ~ x'

ggplot(enf, aes(x = INC, y = ROLL)) +
geom_point() +
geom_smooth(method = "lm", col = "lightgreen") +
labs(title = "Scatterplot of Enrollment (ROLL) vs Per Capita Income (INC)",
x = "Per Capita Income (INC)", y = "Enrollment (ROLL)")
## `geom_smooth()` using formula = 'y ~ x'

#build the linear model using the UNEM and HGRAD to predcit the fall enrollment
model1 <- lm(ROLL ~ UNEM + HGRAD, data = enf)
#Invesitgate the model using summary() and anova()
summary(model1)
##
## Call:
## lm(formula = ROLL ~ UNEM + HGRAD, data = enf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2102.2 -861.6 -349.4 374.5 3603.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.256e+03 2.052e+03 -4.023 0.00044 ***
## UNEM 6.983e+02 2.244e+02 3.111 0.00449 **
## HGRAD 9.423e-01 8.613e-02 10.941 3.16e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1313 on 26 degrees of freedom
## Multiple R-squared: 0.8489, Adjusted R-squared: 0.8373
## F-statistic: 73.03 on 2 and 26 DF, p-value: 2.144e-11
anova(model1)
## Analysis of Variance Table
##
## Response: ROLL
## Df Sum Sq Mean Sq F value Pr(>F)
## UNEM 1 45407767 45407767 26.349 2.366e-05 ***
## HGRAD 1 206279143 206279143 119.701 3.157e-11 ***
## Residuals 26 44805568 1723291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#which variable is most closely related to enrollment
#UNEM becasue the t value is closer to zero
#make a residual plot
residual = resid(model1)
fitted = fitted(model1)
ggplot(enf, aes(x = fitted, y = residual)) +
geom_point() +
geom_hline(yintercept = 0, col = "green")+
ggtitle("Residual Plot") + xlab("Fitted Values") + ylab("Residuals")

#Use the predict() function to estimate expected fall enrollment
new_data = data.frame(UNEM = 9, HGRAD = 25000)
predicted_enrollment = predict(model1, newdata = new_data)
predicted_enrollment
## 1
## 21585.58
#build a second model which includes per capita income (INC)
model2 = lm(ROLL ~ UNEM + HGRAD + INC, data = enf)
#compare the two models with ANOVA()
anova(model1, model2)
## Analysis of Variance Table
##
## Model 1: ROLL ~ UNEM + HGRAD
## Model 2: ROLL ~ UNEM + HGRAD + INC
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 26 44805568
## 2 25 11237313 1 33568255 74.68 5.594e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1