Misal ingin diketahui Y = pengeluaran bulanan untuk print tugas akhir mahasiswa S1, S2, dan S3 di IPB University (dalam Rupiah), dan P = proporsi apakah mahasiswa tersebut memiliki printer pribadi atau tidak.

s = 2022

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(MCPAN)

Pembangkitan Data Strata 1, 2, 3, dan Gabungan

set.seed(s)

n <- 10000
n1 <- 5000
n2 <- 4000
n3 <- 1000

Y1 <- round(rnorm(n1, 100, 10))
Y2 <- round(rnorm(n2, 500, 20))
Y3 <- round(rnorm(n3, 2000, 50))

P1 <- rbinom(n1, 1, 0.2)
P2 <- rbinom(n2, 1, 0.5)
P3 <- rbinom(n3, 1, 0.8)

r1 <- runif(n1)
r2 <- runif(n2)
r3 <- runif(n3)

S1 <- data.frame(No = c(1:n1),
                 Y = Y1,
                 P = P1,
                 Strata = rep('1', n1),
                 R = r1)
S2 <- data.frame(No = c(1:n2),
                 Y = Y2,
                 P = P2,
                 Strata = rep('2', n2),
                 R = r2)
S3 <- data.frame(No = c(1:n3),
                 Y = Y3,
                 P = P3,
                 Strata = rep('3', n3),
                 R = r3)
No <- c(1:n)
Data <- rbind(S1[,c('Strata', 'Y', 'P', 'R')], S2[,c('Strata', 'Y', 'P', 'R')], S3[,c('Strata', 'Y', 'P', 'R')])
Data <- Data[order(Data$R), ]
DataS <- cbind(No, Data[,c('Strata', 'Y', 'P')])
DataS1 <- S1[,c('No', 'Strata', 'Y', 'P')]
DataS2 <- S2[,c('No', 'Strata', 'Y', 'P')]
DataS3 <- S3[,c('No', 'Strata', 'Y', 'P')]

Data ditampilkan 10 teratas sebagai berikut:

head(DataS, 10); head(DataS1, 10); head(DataS2, 10); head(DataS3, 10)
##      No Strata   Y P
## 7405  1      2 465 0
## 5309  2      2 483 1
## 882   3      1 106 0
## 1105  4      1 101 1
## 5552  5      2 501 0
## 4762  6      1  92 0
## 6219  7      2 504 0
## 510   8      1 106 0
## 5757  9      2 531 1
## 4330 10      1 102 0
##    No Strata   Y P
## 1   1      1 109 1
## 2   2      1  88 1
## 3   3      1  91 0
## 4   4      1  86 0
## 5   5      1  97 0
## 6   6      1  71 0
## 7   7      1  89 0
## 8   8      1 103 0
## 9   9      1 107 0
## 10 10      1 102 0
##    No Strata   Y P
## 1   1      2 536 1
## 2   2      2 501 0
## 3   3      2 480 1
## 4   4      2 479 1
## 5   5      2 497 1
## 6   6      2 457 1
## 7   7      2 484 1
## 8   8      2 485 0
## 9   9      2 510 0
## 10 10      2 500 0
##    No Strata    Y P
## 1   1      3 2112 1
## 2   2      3 2028 1
## 3   3      3 2072 1
## 4   4      3 1962 1
## 5   5      3 2014 1
## 6   6      3 2076 1
## 7   7      3 1991 1
## 8   8      3 1886 0
## 9   9      3 2055 0
## 10 10      3 2025 1

Fungsi Sampling

sampling <- function(n, data) {
  set.seed(s)
  u <- c(runif(nrow(data)))
  data_new <- cbind(data, u)
  data_new <- data_new[order(data_new$u), ]
  data_new <- head(data_new, n)
  return(data_new[, c('No', 'Strata', 'Y', 'P')])
}

estimate_mean <- function(data, N){
  n <- length(data)
  var_data <- var(data)
  mean <- sum(data)/n
  var_mean <- (var_data/n)*(1-n/N)
  sd_mean <- sqrt(var_mean)
  confint_mean <- c(mean-qnorm(0.975, 0, 1)*sd_mean, 
                    mean+qnorm(0.975, 0, 1)*sd_mean)
  
  
  return(list(mean = mean, var_mean = var_mean, sd_mean = sd_mean, confint_mean = confint_mean))
}

estimate_proportion <- function(data, N){
  n <- length(data)
  prop <- sum(data)/n
  var_prop <- (prop*(1-prop)/(n-1))*(1-n/N)
  sd_prop <- sqrt(var_prop)
  confint_prop <- c(prop-qnorm(0.975, 0, 1)*sd_prop, 
                    prop+qnorm(0.975, 0, 1)*sd_prop)
  
  return(list(prop = prop, var_prop = var_prop, sd_prop = sd_prop, confint_prop = confint_prop))
}

Simple Random Sampling

srsampling <- function(n, N, data) {
  data_sampling <- sampling(n, data)
  mean <- estimate_mean(data_sampling$Y, N)
  proportion <- estimate_proportion(data_sampling$P, N)
  #browser()
  #cat('Ukuran populasi     : ', N, '\n')
  #cat('Ukuran contoh       : ', n, '\n')
  #cat('Dugaan rata-rata         : ', mean$mean, '\n')
  #cat('Dugaan ragam rata-rata   : ', mean$var_mean, '\n')
  #cat('Dugaan simpangan baku rata-rata  : ', mean$sd_mean, '\n')
  #cat('Dugaan selang kepercayaan 95% bagi rata-rata : ', mean$confint_mean, '\n')
  #cat('Dugaan proporsi          : ', proportion$prop, '\n')
  #cat('Dugaan ragam proporsi    : ', proportion$var_prop, '\n')
  #cat('Dugaan simpangan baku proporsi   : ', proportion$sd_prop, '\n')
  #cat('Dugaan selang kepercayaan 95% bagi proporsi  : ', proportion$confint_prop, '\n')
  df <- data.frame(Method = 'SRS',
                   N = N,
                   n = n,
                   Mean = round(mean$mean,3),
                   Lower_Mean = round(mean$confint_mean[1],3),
                   Upper_Mean = round(mean$confint_mean[2],3),
                   V_Mean = round(mean$var_mean,3),
                   SD_Mean = round(mean$sd_mean,3),
                   Prop = round(proportion$prop,3),
                   Lower_Prop = round(proportion$confint_prop[1],3),
                   Upper_Prop = round(proportion$confint_prop[2],3),
                   V_Prop = round(proportion$var_prop,3),
                   SD_Prop = round(proportion$sd_prop,3))
  return(list(data_sampling=data_sampling, result=df))
}

Stratified Random Sampling - Alokasi Seragam

SRS_DataS1 <- srsampling(40, n1, DataS1)
SRS_DataS2 <- srsampling(40, n2, DataS2)
SRS_DataS3 <- srsampling(40, n3, DataS3)

Fungsi Stratified Sampling

strsampling <- function(n, alokasi){
  N1 <- 5000; N2 <- 4000; N3 <- 1000; N <- 10000
  if (alokasi == 'seragam'){
    n1 <- n/3; n2 <- n/3; n3 <- n/3
  } else if(alokasi == 'proporsional'){
    n1 <- N1/N*n; n2 <- N2/N*n; n3 <- N3/N*n
  }
  w1 <- N1/n1; w2 <- N2/n2; w3 <- N3/n3
  s1 <- srsampling(n1, N1, DataS1)
  s2 <- srsampling(n2, N2, DataS2)
  s3 <- srsampling(n3, N3, DataS3)
  
  mean <- 1/N*(N1*s1$result$Mean + N2*s2$result$Mean + N3*s3$result$Mean)
  var_mean <- 1/N^2*(N1^2*s1$result$V_Mean + N2^2*s2$result$V_Mean + N3^2*s3$result$V_Mean)
  sd_mean <- sqrt(var_mean)
  prop <- 1/N*(N1*s1$result$Prop + N2*s2$result$Prop + N3*s3$result$Prop)
  var_prop <- 1/N^2*(N1^2*s1$result$V_Prop + N2^2*s2$result$V_Prop + N3^2*s3$result$V_Prop)
  sd_prop <- sqrt(var_prop)
  confint_mean <- c(mean-qnorm(0.975, 0, 1)*sd_mean, 
                    mean+qnorm(0.975, 0, 1)*sd_mean)
  confint_prop <- c(prop-qnorm(0.975, 0, 1)*sd_prop, 
                    prop+qnorm(0.975, 0, 1)*sd_prop)
  #print('---- Stratified Random Sampling ----')
  #cat('Ukuran populasi     : ', N, '\n')
  #cat('Ukuran contoh       : ', n, '\n')
  #cat('Dugaan rata-rata         : ', mean, '\n')
  #cat('Dugaan ragam rata-rata   : ', var_mean, '\n')
  #cat('Dugaan simpangan baku rata-rata  : ', sd_mean, '\n')
  #cat('Dugaan selang kepercayaan rata-rata  : ', confint_mean, '\n')
  #cat('Dugaan proporsi          : ', prop, '\n')
  #cat('Dugaan ragam proporsi    : ', var_prop, '\n')
  #cat('Dugaan simpangan baku proporsi   : ', sd_prop, '\n')
  #cat('Dugaan selang kepercayaan proporsi  : ', confint_prop, '\n')
  #browser()
  df <- data.frame(Method = paste0('STR ', alokasi),
                   N = N,
                   n = n,
                   Mean = round(mean,3),
                   Lower_Mean = round(confint_mean[1],3),
                   Upper_Mean = round(confint_mean[2],3),
                   V_Mean = round(var_mean,3),
                   SD_Mean = round(sd_mean),
                   Prop = round(prop,3),
                   Lower_Prop = round(confint_prop[1],3),
                   Upper_Prop = round(confint_prop[2],3),
                   V_Prop = round(var_prop,3),
                   SD_Prop = round(sd_prop,3))
  
  return(list(data1 = s1$data_sampling, data2 = s2$data_sampling, data3 = s3$data_sampling, result = df))
}

Horvitz-Thompson Estimator for Stratified Sampling

library(mase)
strsampling_HT <- function(n, alokasi){
  N1 <- 5000; N2 <- 4000; N3 <- 1000; N <- 10000
  if (alokasi == 'seragam'){
    n1 <- n/3; n2 <- n/3; n3 <- n/3
  } else if(alokasi == 'proporsional'){
    n1 <- N1/N*n; n2 <- N2/N*n; n3 <- N3/N*n
  }
  p1 <- n1/N1; p2 <- n2/N2; p3 <- n3/N3
  
  s1 <- srsampling(n1, N1, DataS1)
  s2 <- srsampling(n2, N2, DataS2)
  s3 <- srsampling(n3, N3, DataS3)
  
  ps <- c(rep(p1, n1), rep(p2, n2), rep(p3, n3))
  sm1 <- c(s1$data_sampling$Y, s2$data_sampling$Y, s3$data_sampling$Y)
  mest <- horvitzThompson(sm1, ps, N, var_est = T)
  sm2 <- c(s1$data_sampling$P, s2$data_sampling$P, s3$data_sampling$P)
  pest <- horvitzThompson(sm2, ps, N, var_est = T)
  mean <- mest$pop_mean
  prop <- pest$pop_mean
  var_mean <- mest$pop_mean_var
  var_prop <- pest$pop_mean_var
  sd_mean <- sqrt(var_mean)
  sd_prop <- sqrt(var_prop)
  confint_mean <- c(mean-qnorm(0.975, 0, 1)*sd_mean, 
                    mean+qnorm(0.975, 0, 1)*sd_mean)
  confint_prop <- c(prop-qnorm(0.975, 0, 1)*sd_prop, 
                    prop+qnorm(0.975, 0, 1)*sd_prop)
  
  #print('---- Stratified Random Sampling ----')
  #cat('Ukuran populasi     : ', N, '\n')
  #cat('Ukuran contoh       : ', n, '\n')
  #cat('Dugaan rata-rata         : ', mean, '\n')
  #cat('Dugaan ragam rata-rata   : ', var_mean, '\n')
  #cat('Dugaan simpangan baku rata-rata  : ', sd_mean, '\n')
  #cat('Dugaan selang kepercayaan rata-rata  : ', confint_mean, '\n')
  #cat('Dugaan proporsi          : ', prop, '\n')
  #cat('Dugaan ragam proporsi    : ', var_prop, '\n')
  #cat('Dugaan simpangan baku proporsi   : ', sd_prop, '\n')
  #cat('Dugaan selang kepercayaan proporsi  : ', confint_prop, '\n')
  #browser()
  df <- data.frame(Method = paste0('STR HT ', alokasi),
                   N = N,
                   n = n,
                   Mean = round(mean,3),
                   Lower_Mean = round(confint_mean[1],3),
                   Upper_Mean = round(confint_mean[2],3),
                   V_Mean = round(var_mean,3),
                   SD_Mean = round(sd_mean),
                   Prop = round(prop,3),
                   Lower_Prop = round(confint_prop[1],3),
                   Upper_Prop = round(confint_prop[2],3),
                   V_Prop = round(var_prop,3),
                   SD_Prop = round(sd_prop,3))
  
  return(list(data1 = s1$data_sampling, data2 = s2$data_sampling, data3 = s3$data_sampling, result = df))
}

Hasil

# Populasi
Populasi <- data.frame(Method = 'Populasi',
                   N = 10000,
                   n = "-",
                   Mean = round(mean(DataS$Y),3),
                   Lower_Mean = "-",
                   Upper_Mean = "-",
                   V_Mean = round(var(DataS$Y)/10000,3),
                   SD_Mean = round(sqrt(var(DataS$Y)/10000),3),
                   Prop = round(sum(DataS$P)/10000,3),
                   Lower_Prop = "-",
                   Upper_Prop = "-",
                   V_Prop = round((sum(DataS$P)/10000)*(1-sum(DataS$P)/10000)/10000,3),
                   SD_Prop = round(sqrt((sum(DataS$P)/10000)*(1-sum(DataS$P)/10000)/10000),3))

# n = 120
SRS_DataS120 <- srsampling(120, 10000, DataS)
STR_Proporsional120 <- strsampling(120, 'proporsional')
STR_Seragam120 <- strsampling(120, "seragam")
STRHT_Seragam120 <- strsampling_HT(120, "seragam")
STRHT_Proporsional120 <- strsampling_HT(120, "proporsional")

# n = 300
SRS_DataS300 <- srsampling(300, 10000, DataS)
STR_Proporsional300 <- strsampling(300, 'proporsional')
STR_Seragam300 <- strsampling(300, "seragam")
STRHT_Seragam300 <- strsampling_HT(300, "seragam")
STRHT_Proporsional300 <- strsampling_HT(300, "proporsional")

# n = 30
SRS_DataS30 <- srsampling(30, 10000, DataS)
STR_Proporsional30 <- strsampling(30, 'proporsional')
STR_Seragam30 <- strsampling(30, "seragam")
STRHT_Seragam30 <- strsampling_HT(30, "seragam")
STRHT_Proporsional30 <- strsampling_HT(30, "proporsional")

# n = 600
SRS_DataS600 <- srsampling(600, 10000, DataS)
STR_Proporsional600 <- strsampling(600, 'proporsional')
STR_Seragam600 <- strsampling(600, "seragam")
STRHT_Seragam600 <- strsampling_HT(600, "seragam")
STRHT_Proporsional600 <- strsampling_HT(600, "proporsional")

Populasi per strata

# function
getmiuprop <- function(data_y, data_p){
  n <- length(data_y)
  y <- mean(data_y); vy <- var(data_y)
  p <- mean(data_p); vp <- p*(1-p)
  return(c(n, round(c(y, sqrt(vy), p, sqrt(vp)), 3)))
}
# all
All <- getmiuprop(DataS$Y, DataS$P)
# s1_all
S1 <- getmiuprop(DataS1$Y, DataS1$P)
# s2_all
S2 <- getmiuprop(DataS2$Y, DataS2$P)
# s3_all
S3 <- getmiuprop(DataS3$Y, DataS3$P)
# df
dfs <- data.frame(rbind(All, S1, S2, S3))
colnames(dfs) <- c('n', 'Mean', 'SB_Mean', 'Prop', 'SB_Prop')
dfs
##         n     Mean SB_Mean  Prop SB_Prop
## All 10000  449.856 550.527 0.390   0.488
## S1   5000  100.000   9.984 0.212   0.409
## S2   4000  499.548  19.929 0.507   0.500
## S3   1000 2000.363  49.710 0.808   0.394

n = 30, STR Seragam

# s1
S1_STRS30 <- getmiuprop(STR_Seragam30$data1$Y, STR_Seragam30$data1$P)
# s2
S2_STRS30 <- getmiuprop(STR_Seragam30$data2$Y, STR_Seragam30$data2$P)
# s3
S3_STRS30 <- getmiuprop(STR_Seragam30$data3$Y, STR_Seragam30$data3$P)
# df
dfs_strs30 <- data.frame(rbind(S1_STRS30, S2_STRS30, S3_STRS30))
colnames(dfs_strs30) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strs30) <- c('S1 STRS', 'S2 STRS', 'S3 STRS')
dfs_strs30
##          n   Mean SD_Mean Prop SD_Prop
## S1 STRS 10  103.0  11.991  0.1   0.300
## S2 STRS 10  505.0  23.641  0.7   0.458
## S3 STRS 10 1983.8  54.195  0.7   0.458

n = 120, STR Seragam

# s1
S1_STRS120 <- getmiuprop(STR_Seragam120$data1$Y, STR_Seragam120$data1$P)
# s2
S2_STRS120 <- getmiuprop(STR_Seragam120$data2$Y, STR_Seragam120$data2$P)
# s3
S3_STRS120 <- getmiuprop(STR_Seragam120$data3$Y, STR_Seragam120$data3$P)
# df
dfs_strs120 <- data.frame(rbind(S1_STRS120, S2_STRS120, S3_STRS120))
colnames(dfs_strs120) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strs120) <- c('S1 STRS', 'S2 STRS', 'S3 STRS')
dfs_strs120
##          n    Mean SD_Mean  Prop SD_Prop
## S1 STRS 40  100.80  10.371 0.275   0.447
## S2 STRS 40  499.90  20.928 0.575   0.494
## S3 STRS 40 1998.75  57.769 0.800   0.400

n = 300, STR Seragam

# s1
S1_STRS300 <- getmiuprop(STR_Seragam300$data1$Y, STR_Seragam300$data1$P)
# s2
S2_STRS300 <- getmiuprop(STR_Seragam300$data2$Y, STR_Seragam300$data2$P)
# s3
S3_STRS300 <- getmiuprop(STR_Seragam300$data3$Y, STR_Seragam300$data3$P)
# df
dfs_strs300 <- data.frame(rbind(S1_STRS300, S2_STRS300, S3_STRS300))
colnames(dfs_strs300) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strs300) <- c('S1 STRS', 'S2 STRS', 'S3 STRS')
dfs_strs300
##           n    Mean SD_Mean Prop SD_Prop
## S1 STRS 100  100.50   9.870 0.28   0.449
## S2 STRS 100  499.72  20.631 0.50   0.500
## S3 STRS 100 2000.30  52.372 0.78   0.414

n = 600, STR Seragam

# s1
S1_STRS600 <- getmiuprop(STR_Seragam600$data1$Y, STR_Seragam600$data1$P)
# s2
S2_STRS600 <- getmiuprop(STR_Seragam600$data2$Y, STR_Seragam600$data2$P)
# s3
S3_STRS600 <- getmiuprop(STR_Seragam600$data3$Y, STR_Seragam600$data3$P)
# df
dfs_strs600 <- data.frame(rbind(S1_STRS600, S2_STRS600, S3_STRS600))
colnames(dfs_strs600) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strs600) <- c('S1 STRS', 'S2 STRS', 'S3 STRS')
dfs_strs600
##           n     Mean SD_Mean  Prop SD_Prop
## S1 STRS 200  101.340   9.898 0.275   0.447
## S2 STRS 200  499.625  19.935 0.525   0.499
## S3 STRS 200 2000.635  50.725 0.805   0.396
names2 <- c('30', '120', '300', '600')
x1 <- c(S1_STRS30[2], S1_STRS120[2], S1_STRS300[2], S1_STRS600[2])
l1 <- c(S1_STRS30[2]-2*S1_STRS30[3], S1_STRS120[2]-2*S1_STRS120[3], S1_STRS300[2]-2*S1_STRS300[3], S1_STRS600[2]-2*S1_STRS600[3])
u1 <- c(S1_STRS30[2]+2*S1_STRS30[3], S1_STRS120[2]+2*S1_STRS120[3], S1_STRS300[2]+2*S1_STRS300[3], S1_STRS600[2]+2*S1_STRS600[3])
names(x1) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x1, lower = l1, upper = u1, lines=S1[2], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 1 Metode Stratified Seragam", ylab='Dugaan rata-rata', xlab='Ukuran contoh')

p1 <- c(S1_STRS30[4], S1_STRS120[4], S1_STRS300[4], S1_STRS600[4])
l1 <- c(S1_STRS30[4]-2*S1_STRS30[5], S1_STRS120[5]-2*S1_STRS120[5], S1_STRS300[4]-2*S1_STRS300[5], S1_STRS600[4]-2*S1_STRS600[5])
u1 <- c(S1_STRS30[4]+2*S1_STRS30[5], S1_STRS120[4]+2*S1_STRS120[5], S1_STRS300[4]+2*S1_STRS300[5], S1_STRS600[4]+2*S1_STRS600[5])
names(p1) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
plotCII(p1, lower = l1, upper = u1, lines=S1[4], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 1 Metode Stratified Seragam", ylab='Dugaan proporsi', xlab='Ukuran contoh')

names2 <- c('30', '120', '300', '600')
x2 <- c(S2_STRS30[2], S2_STRS120[2], S2_STRS300[2], S2_STRS600[2])
l2 <- c(S2_STRS30[2]-2*S2_STRS30[3], S2_STRS120[2]-2*S2_STRS120[3], S2_STRS300[2]-2*S2_STRS300[3], S2_STRS600[2]-2*S2_STRS600[3])
u2 <- c(S2_STRS30[2]+2*S2_STRS30[3], S2_STRS120[2]+2*S2_STRS120[3], S2_STRS300[2]+2*S2_STRS300[3], S2_STRS600[2]+2*S2_STRS600[3])
names(x2) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x2, lower = l2, upper = u2, lines=S2[2], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 2 Metode Stratified Seragam", ylab='Dugaan rata-rata', xlab='Ukuran contoh')

p2 <- c(S2_STRS30[4], S2_STRS120[4], S2_STRS300[4], S2_STRS600[4])
l2 <- c(S2_STRS30[4]-2*S2_STRS30[5], S2_STRS120[5]-2*S2_STRS120[5], S2_STRS300[4]-2*S2_STRS300[5], S2_STRS600[4]-2*S2_STRS600[5])
u2 <- c(S2_STRS30[4]+2*S2_STRS30[5], S2_STRS120[4]+2*S2_STRS120[5], S2_STRS300[4]+2*S2_STRS300[5], S2_STRS600[4]+2*S2_STRS600[5])
names(p2) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
plotCII(p2, lower = l2, upper = u2, lines=S2[4], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 2 Metode Stratified Seragam", ylab='Dugaan proporsi', xlab='Ukuran contoh')

names2 <- c('30', '120', '300', '600')
x3 <- c(S3_STRS30[2], S3_STRS120[2], S3_STRS300[2], S3_STRS600[2])
l3 <- c(S3_STRS30[2]-2*S3_STRS30[3], S3_STRS120[2]-2*S3_STRS120[3], S3_STRS300[2]-2*S3_STRS300[3], S3_STRS600[2]-2*S3_STRS600[3])
u3 <- c(S3_STRS30[2]+2*S3_STRS30[3], S3_STRS120[2]+2*S3_STRS120[3], S3_STRS300[2]+2*S3_STRS300[3], S3_STRS600[2]+2*S3_STRS600[3])
names(x3) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x3, lower = l3, upper = u3, lines=S3[2], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 3 Metode Stratified Seragam", ylab='Dugaan rata-rata', xlab='Ukuran contoh')

p3 <- c(S3_STRS30[4], S3_STRS120[4], S3_STRS300[4], S3_STRS600[4])
l3 <- c(S3_STRS30[4]-2*S3_STRS30[5], S3_STRS120[5]-2*S3_STRS120[5], S3_STRS300[4]-2*S3_STRS300[5], S3_STRS600[4]-2*S3_STRS600[5])
u3 <- c(S3_STRS30[4]+2*S3_STRS30[5], S3_STRS120[4]+2*S3_STRS120[5], S3_STRS300[4]+2*S3_STRS300[5], S3_STRS600[4]+2*S3_STRS600[5])
names(p3) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
plotCII(p3, lower = l3, upper = u3, lines=S3[4], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 3 Metode Stratified Seragam", ylab='Dugaan proporsi', xlab='Ukuran contoh')

n = 30, STR Proporsional

# s1
S1_STRP30 <- getmiuprop(STR_Proporsional30$data1$Y, STR_Proporsional30$data1$P)
# s2
S2_STRP30 <- getmiuprop(STR_Proporsional30$data2$Y, STR_Proporsional30$data2$P)
# s3
S3_STRP30 <- getmiuprop(STR_Proporsional30$data3$Y, STR_Proporsional30$data3$P)
# df
dfs_strp30 <- data.frame(rbind(S1_STRP30, S2_STRP30, S3_STRP30))
colnames(dfs_strp30) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strp30) <- c('S1 STRP', 'S2 STRP', 'S3 STRP')
dfs_strp30
##          n     Mean SD_Mean  Prop SD_Prop
## S1 STRP 15  100.133  11.801 0.067   0.249
## S2 STRP 12  499.250  26.721 0.750   0.433
## S3 STRP  3 2022.333  23.861 0.667   0.471

n = 120, STR Proporsional

# s1
S1_STRP120 <- getmiuprop(STR_Proporsional120$data1$Y, STR_Proporsional120$data1$P)
# s2
S2_STRP120 <- getmiuprop(STR_Proporsional120$data2$Y, STR_Proporsional120$data2$P)
# s3
S3_STRP120 <- getmiuprop(STR_Proporsional120$data3$Y, STR_Proporsional120$data3$P)
# df
dfs_strp120 <- data.frame(rbind(S1_STRP120, S2_STRP120, S3_STRP120))
colnames(dfs_strp120) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strp120) <- c('S1 STRP', 'S2 STRP', 'S3 STRP')
dfs_strp120
##          n     Mean SD_Mean  Prop SD_Prop
## S1 STRP 60  100.867  10.465 0.317   0.465
## S2 STRP 48  500.875  21.833 0.583   0.493
## S3 STRP 12 1992.333  53.125 0.750   0.433

n = 300, STR Proporsional

# s1
S1_STRP300 <- getmiuprop(STR_Proporsional300$data1$Y, STR_Proporsional300$data1$P)
# s2
S2_STRP300 <- getmiuprop(STR_Proporsional300$data2$Y, STR_Proporsional300$data2$P)
# s3
S3_STRP300 <- getmiuprop(STR_Proporsional300$data3$Y, STR_Proporsional300$data3$P)
# df
dfs_strp300 <- data.frame(rbind(S1_STRP300, S2_STRP300, S3_STRP300))
colnames(dfs_strp300) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strp300) <- c('S1 STRP', 'S2 STRP', 'S3 STRP')
dfs_strp300
##           n     Mean SD_Mean  Prop SD_Prop
## S1 STRP 150  100.960   9.811 0.287   0.452
## S2 STRP 120  499.008  21.171 0.525   0.499
## S3 STRP  30 1989.500  55.812 0.800   0.400

n = 600, STR Seragam

# s1
S1_STRP600 <- getmiuprop(STR_Proporsional600$data1$Y, STR_Proporsional600$data1$P)
# s2
S2_STRP600 <- getmiuprop(STR_Proporsional600$data2$Y, STR_Proporsional600$data2$P)
# s3
S3_STRP600 <- getmiuprop(STR_Proporsional600$data3$Y, STR_Proporsional600$data3$P)
# df
dfs_strp600 <- data.frame(rbind(S1_STRP600, S2_STRP600, S3_STRP600))
colnames(dfs_strp600) <- c('n', 'Mean', 'SD_Mean', 'Prop', 'SD_Prop')
rownames(dfs_strp600) <- c('S1 STRP', 'S2 STRP', 'S3 STRP')
dfs_strp600
##           n     Mean SD_Mean  Prop SD_Prop
## S1 STRP 300  100.587   9.902 0.260   0.439
## S2 STRP 240  500.292  20.070 0.517   0.500
## S3 STRP  60 1994.933  55.328 0.767   0.423
names2 <- c('30', '120', '300', '600')
x1 <- c(S1_STRP30[2], S1_STRP120[2], S1_STRP300[2], S1_STRP600[2])
l1 <- c(S1_STRP30[2]-2*S1_STRP30[3], S1_STRP120[2]-2*S1_STRP120[3], S1_STRP300[2]-2*S1_STRP300[3], S1_STRP600[2]-2*S1_STRP600[3])
u1 <- c(S1_STRP30[2]+2*S1_STRP30[3], S1_STRP120[2]+2*S1_STRP120[3], S1_STRP300[2]+2*S1_STRP300[3], S1_STRP600[2]+2*S1_STRP600[3])
names(x1) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x1, lower = l1, upper = u1, lines=S1[2], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 1 Metode Stratified Proporsional", ylab='Dugaan rata-rata', xlab='Ukuran contoh')

p1 <- c(S1_STRP30[4], S1_STRP120[4], S1_STRP300[4], S1_STRP600[4])
l1 <- c(S1_STRP30[4]-2*S1_STRP30[5], S1_STRP120[5]-2*S1_STRP120[5], S1_STRP300[4]-2*S1_STRP300[5], S1_STRP600[4]-2*S1_STRP600[5])
u1 <- c(S1_STRP30[4]+2*S1_STRP30[5], S1_STRP120[4]+2*S1_STRP120[5], S1_STRP300[4]+2*S1_STRP300[5], S1_STRP600[4]+2*S1_STRP600[5])
names(p1) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
plotCII(p1, lower = l1, upper = u1, lines=S1[4], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 1 Metode Stratified Proporsional", ylab='Dugaan proporsi', xlab='Ukuran contoh')

names2 <- c('30', '120', '300', '600')
x2 <- c(S2_STRP30[2], S2_STRP120[2], S2_STRP300[2], S2_STRP600[2])
l2 <- c(S2_STRP30[2]-2*S2_STRP30[3], S2_STRP120[2]-2*S2_STRP120[3], S2_STRP300[2]-2*S2_STRP300[3], S2_STRP600[2]-2*S2_STRP600[3])
u2 <- c(S2_STRP30[2]+2*S2_STRP30[3], S2_STRP120[2]+2*S2_STRP120[3], S2_STRP300[2]+2*S2_STRP300[3], S2_STRP600[2]+2*S2_STRP600[3])
names(x2) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x2, lower = l2, upper = u2, lines=S2[2], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 2 Metode Stratified Proporsional", ylab='Dugaan rata-rata', xlab='Ukuran contoh')

p2 <- c(S2_STRP30[4], S2_STRP120[4], S2_STRP300[4], S2_STRP600[4])
l2 <- c(S2_STRP30[4]-2*S2_STRP30[5], S2_STRP120[5]-2*S2_STRP120[5], S2_STRP300[4]-2*S2_STRP300[5], S2_STRP600[4]-2*S2_STRP600[5])
u2 <- c(S2_STRP30[4]+2*S2_STRP30[5], S2_STRP120[4]+2*S2_STRP120[5], S2_STRP300[4]+2*S2_STRP300[5], S2_STRP600[4]+2*S2_STRP600[5])
names(p2) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
plotCII(p2, lower = l2, upper = u2, lines=S2[4], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 2 Metode Stratified Proporsional", ylab='Dugaan proporsi', xlab='Ukuran contoh')

names2 <- c('30', '120', '300', '600')
x3 <- c(S3_STRP30[2], S3_STRP120[2], S3_STRP300[2], S3_STRP600[2])
l3 <- c(S3_STRP30[2]-2*S3_STRP30[3], S3_STRP120[2]-2*S3_STRP120[3], S3_STRP300[2]-2*S3_STRP300[3], S3_STRP600[2]-2*S3_STRP600[3])
u3 <- c(S3_STRP30[2]+2*S3_STRP30[3], S3_STRP120[2]+2*S3_STRP120[3], S3_STRP300[2]+2*S3_STRP300[3], S3_STRP600[2]+2*S3_STRP600[3])
names(x3) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x3, lower = l3, upper = u3, lines=S3[2], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 3 Metode Stratified Proporsional", ylab='Dugaan rata-rata', xlab='Ukuran contoh')

p3 <- c(S3_STRP30[4], S3_STRP120[4], S3_STRP300[4], S3_STRP600[4])
l3 <- c(S3_STRP30[4]-2*S3_STRP30[5], S3_STRP120[5]-2*S3_STRP120[5], S3_STRP300[4]-2*S3_STRP300[5], S3_STRP600[4]-2*S3_STRP600[5])
u3 <- c(S3_STRP30[4]+2*S3_STRP30[5], S3_STRP120[4]+2*S3_STRP120[5], S3_STRP300[4]+2*S3_STRP300[5], S3_STRP600[4]+2*S3_STRP600[5])
names(p3) <- names2
cols <- c('blue', 'coral', 'green', 'purple')
plotCII(p3, lower = l3, upper = u3, lines=S3[4], CIvert = T, linescol='grey', CIcol = cols, lineslwd = 1.5, CIlwd = 3, main = "Perbandingan Strata 3 Metode Stratified Proporsional", ylab='Dugaan proporsi', xlab='Ukuran contoh')

Hasil30 <- rbind(Populasi, 
               SRS_DataS30$result, STR_Seragam30$result, STRHT_Seragam30$result, STR_Proporsional30$result, STRHT_Proporsional30$result)
Hasil30
##                Method     N  n    Mean Lower_Mean Upper_Mean    V_Mean SD_Mean
## 1            Populasi 10000  - 449.856          -          -    30.308   5.505
## 2                 SRS 10000 30 451.467    247.656    655.277 10813.262 103.987
## 3         STR seragam 10000 30 451.880    444.185    459.575    15.415   4.000
## 4      STR HT seragam 10000 30 451.880    375.098    528.662  1534.688  39.000
## 5    STR proporsional 10000 30 452.000    444.746    459.254    13.698   4.000
## 6 STR HT proporsional 10000 30 452.000    249.741    654.259 10649.250 103.000
##   Prop Lower_Prop Upper_Prop V_Prop SD_Prop
## 1 0.39          -          -  0.000   0.005
## 2 0.50      0.318      0.682  0.009   0.093
## 3 0.40      0.243      0.557  0.006   0.080
## 4 0.40       0.21       0.59  0.009   0.097
## 5 0.40      0.264      0.536  0.005   0.069
## 6 0.40      0.222      0.578  0.008   0.091
Hasil120 <- rbind(Populasi, 
               SRS_DataS120$result, STR_Seragam120$result, STRHT_Seragam120$result, STR_Proporsional120$result, STRHT_Proporsional120$result)
Hasil120
##                Method     N   n    Mean Lower_Mean Upper_Mean   V_Mean SD_Mean
## 1            Populasi 10000   - 449.856          -          -   30.308   5.505
## 2                 SRS 10000 120 436.417    339.535    533.299 2443.372  49.430
## 3         STR seragam 10000 120 450.235    446.728    453.742    3.202   2.000
## 4      STR HT seragam 10000 120 450.235    412.346    488.124  373.715  19.000
## 5    STR proporsional 10000 120 450.017    445.932    454.102    4.344   2.000
## 6 STR HT proporsional 10000 120 450.017    352.141    547.892 2493.752  50.000
##    Prop Lower_Prop Upper_Prop V_Prop SD_Prop
## 1 0.390          -          -  0.000   0.005
## 2 0.400      0.313      0.487  0.002   0.045
## 3 0.448      0.355       0.54  0.002   0.047
## 4 0.448      0.349      0.546  0.003   0.050
## 5 0.467       0.38      0.554  0.002   0.044
## 6 0.467      0.378      0.556  0.002   0.045
Hasil300 <- rbind(Populasi,
               SRS_DataS300$result, STR_Seragam300$result, STRHT_Seragam300$result, STR_Proporsional300$result, STRHT_Proporsional300$result)
Hasil300
##                Method     N   n    Mean Lower_Mean Upper_Mean  V_Mean SD_Mean
## 1            Populasi 10000   - 449.856          -          -  30.308   5.505
## 2                 SRS 10000 300 439.840    380.073    499.607 929.881  30.494
## 3         STR seragam 10000 300 450.168    448.067    452.269   1.150   1.000
## 4      STR HT seragam 10000 300 450.168    426.496     473.84 145.869  12.000
## 5    STR proporsional 10000 300 449.033    446.446     451.62   1.742   1.000
## 6 STR HT proporsional 10000 300 449.033    387.949    510.118 971.320  31.000
##    Prop Lower_Prop Upper_Prop V_Prop SD_Prop
## 1 0.390          -          -  0.000   0.005
## 2 0.390      0.336      0.444  0.001   0.028
## 3 0.418      0.361      0.475  0.001   0.029
## 4 0.418      0.357      0.479  0.001   0.031
## 5 0.434      0.385      0.482  0.001   0.025
## 6 0.433      0.378      0.489  0.001   0.028
Hasil600 <- rbind(Populasi, 
               SRS_DataS600$result, STR_Seragam600$result, STRHT_Seragam600$result, STR_Proporsional600$result, STRHT_Proporsional600$result)
Hasil600
##                Method     N   n    Mean Lower_Mean Upper_Mean  V_Mean SD_Mean
## 1            Populasi 10000   - 449.856          -          -  30.308   5.505
## 2                 SRS 10000 600 426.333    385.615    467.052 431.604  20.775
## 3         STR seragam 10000 600 450.584    449.167        452   0.522   1.000
## 4      STR HT seragam 10000 600 450.584     434.22    466.947  69.708   8.000
## 5    STR proporsional 10000 600 449.904    448.141    451.666   0.809   1.000
## 6 STR HT proporsional 10000 600 449.903    407.288    492.518 472.744  22.000
##    Prop Lower_Prop Upper_Prop V_Prop SD_Prop
## 1 0.390          -          -      0   0.005
## 2 0.387      0.349      0.424      0   0.019
## 3 0.428      0.388      0.468      0   0.020
## 4 0.428      0.385      0.471      0   0.022
## 5 0.414      0.372      0.455      0   0.021
## 6 0.413      0.375      0.452      0   0.020

Plot Gabungan

names <- c('SRS 30', 'STRS 30', 'STRS-HT 30', 'STRP 30', 'STRP-HT 30',
           'SRS 120', 'STRS 120', 'STRS-HT 120', 'STRP 120', 'STRP-HT 120',
           'SRS 300', 'STRS 300', 'STRS-HT 300', 'STRP 300', 'STRP-HT 300',
           'SRS 600', 'STRS 600', 'STRS-HT 600', 'STRP 600', 'STRP-HT 60')

x30 <- c(SRS_DataS30$result$Mean, STR_Seragam30$result$Mean, STRHT_Seragam30$result$Mean, 
       STR_Proporsional30$result$Mean, STRHT_Proporsional30$result$Mean)
x120 <- c(SRS_DataS120$result$Mean, STR_Seragam120$result$Mean, STRHT_Seragam120$result$Mean,
       STR_Proporsional120$result$Mean, STRHT_Proporsional120$result$Mean)
x300 <- c(SRS_DataS300$result$Mean, STR_Seragam300$result$Mean, STRHT_Seragam300$result$Mean,
       STR_Proporsional300$result$Mean, STRHT_Proporsional300$result$Mean)
x600 <- c(SRS_DataS600$result$Mean, STR_Seragam600$result$Mean, STRHT_Seragam600$result$Mean, 
       STR_Proporsional600$result$Mean, STRHT_Proporsional600$result$Mean)
x <- c(x30, x120, x300, x600)

l30 <- c(SRS_DataS30$result$Lower_Mean, STR_Seragam30$result$Lower_Mean, STRHT_Seragam30$result$Lower_Mean, 
       STR_Proporsional30$result$Lower_Mean, STRHT_Proporsional30$result$Lower_Mean)
l120 <- c(SRS_DataS120$result$Lower_Mean, STR_Seragam120$result$Lower_Mean, STRHT_Seragam120$result$Lower_Mean, 
       STR_Proporsional120$result$Lower_Mean, STRHT_Proporsional120$result$Lower_Mean)
l300 <- c(SRS_DataS300$result$Lower_Mean, STR_Seragam300$result$Lower_Mean, STRHT_Seragam300$result$Lower_Mean, 
       STR_Proporsional300$result$Lower_Mean, STRHT_Proporsional300$result$Lower_Mean)
l600 <- c(SRS_DataS600$result$Lower_Mean, STR_Seragam600$result$Lower_Mean, STRHT_Seragam600$result$Lower_Mean, 
       STR_Proporsional600$result$Lower_Mean, STRHT_Proporsional600$result$Lower_Mean)
lower <- c(l30, l120, l300, l600)

u30 <- c(SRS_DataS30$result$Upper_Mean, STR_Seragam30$result$Upper_Mean, STRHT_Seragam30$result$Upper_Mean, 
       STR_Proporsional30$result$Upper_Mean, STRHT_Proporsional30$result$Upper_Mean)
u120 <- c(SRS_DataS120$result$Upper_Mean, STR_Seragam120$result$Upper_Mean, STRHT_Seragam120$result$Upper_Mean, 
       STR_Proporsional120$result$Upper_Mean, STRHT_Proporsional120$result$Upper_Mean)
u300 <- c(SRS_DataS300$result$Upper_Mean, STR_Seragam300$result$Upper_Mean, STRHT_Seragam300$result$Upper_Mean, 
       STR_Proporsional300$result$Upper_Mean, STRHT_Proporsional300$result$Upper_Mean)
u600 <- c(SRS_DataS600$result$Upper_Mean, STR_Seragam600$result$Upper_Mean, STRHT_Seragam600$result$Upper_Mean, 
       STR_Proporsional600$result$Upper_Mean, STRHT_Proporsional600$result$Upper_Mean)
upper <- c(u30, u120, u300, u600)

names(x) <- names
cols <- rep(c('blue', 'coral', 'green', 'purple', 'black'), times = 4)
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(x, lower = lower, upper = upper, lines=Populasi$Mean, CIvert = T, linescol='grey', CIcol = cols, lineslwd = 2, CIlwd = 4, main = "Perbandingan Selang Penduga Rata-rata", ylab='Dugaan Rata-rata')

names2 <- c('SRS 30', 'STRS 30', 'STRS-HT 30', 'STRP 30', 'STRP-HT 30',
           'SRS 120', 'STRS 120', 'STRS-HT 120', 'STRP 120', 'STRP-HT 120',
           'SRS 300', 'STRS 300', 'STRS-HT 300', 'STRP 300', 'STRP-HT 300',
           'SRS 600', 'STRS 600', 'STRS-HT 600', 'STRP 600', 'STRP-HT 60')

p30 <- c(SRS_DataS30$result$Prop, STR_Seragam30$result$Prop, STRHT_Seragam30$result$Prop, 
       STR_Proporsional30$result$Prop, STRHT_Proporsional30$result$Prop)
p120 <- c(SRS_DataS120$result$Prop, STR_Seragam120$result$Prop, STRHT_Seragam120$result$Prop,
       STR_Proporsional120$result$Prop, STRHT_Proporsional120$result$Prop)
p300 <- c(SRS_DataS300$result$Prop, STR_Seragam300$result$Prop, STRHT_Seragam300$result$Prop,
       STR_Proporsional300$result$Prop, STRHT_Proporsional300$result$Prop)
p600 <- c(SRS_DataS600$result$Prop, STR_Seragam600$result$Prop, STRHT_Seragam600$result$Prop, 
       STR_Proporsional600$result$Prop, STRHT_Proporsional600$result$Prop)
p <- c(p30, p120, p300, p600)

lp30 <- c(SRS_DataS30$result$Lower_Prop, STR_Seragam30$result$Lower_Prop, STRHT_Seragam30$result$Lower_Prop, 
       STR_Proporsional30$result$Lower_Prop, STRHT_Proporsional30$result$Lower_Prop)
lp120 <- c(SRS_DataS120$result$Lower_Prop, STR_Seragam120$result$Lower_Prop, STRHT_Seragam120$result$Lower_Prop, 
       STR_Proporsional120$result$Lower_Prop, STRHT_Proporsional120$result$Lower_Prop)
lp300 <- c(SRS_DataS300$result$Lower_Prop, STR_Seragam300$result$Lower_Prop, STRHT_Seragam300$result$Lower_Prop, 
       STR_Proporsional300$result$Lower_Prop, STRHT_Proporsional300$result$Lower_Prop)
lp600 <- c(SRS_DataS600$result$Lower_Prop, STR_Seragam600$result$Lower_Prop, STRHT_Seragam600$result$Lower_Prop, 
       STR_Proporsional600$result$Lower_Prop, STRHT_Proporsional600$result$Lower_Prop)
lowerp <- c(lp30, lp120, lp300, lp600)

up30 <- c(SRS_DataS30$result$Upper_Prop, STR_Seragam30$result$Upper_Prop, STRHT_Seragam30$result$Upper_Prop, 
       STR_Proporsional30$result$Upper_Prop, STRHT_Proporsional30$result$Upper_Prop)
up120 <- c(SRS_DataS120$result$Upper_Prop, STR_Seragam120$result$Upper_Prop, STRHT_Seragam120$result$Upper_Prop, 
       STR_Proporsional120$result$Upper_Prop, STRHT_Proporsional120$result$Upper_Prop)
up300 <- c(SRS_DataS300$result$Upper_Prop, STR_Seragam300$result$Upper_Prop, STRHT_Seragam300$result$Upper_Prop, 
       STR_Proporsional300$result$Upper_Prop, STRHT_Proporsional300$result$Upper_Prop)
up600 <- c(SRS_DataS600$result$Upper_Prop, STR_Seragam600$result$Upper_Prop, STRHT_Seragam600$result$Upper_Prop, 
       STR_Proporsional600$result$Upper_Prop, STRHT_Proporsional600$result$Upper_Prop)
upperp <- c(up30, up120, up300, up600)

names(p) <- names2
cols <- rep(c('blue', 'coral', 'green', 'purple', 'black'), times = 4)
#x<-binomORci(x=x, n=n, names=c("0","120","240","480","600","720"))
plotCII(p, lower = lowerp, upper = upperp, lines=Populasi$Prop, CIvert = T, linescol='grey', CIcol = cols, lineslwd = 2, CIlwd = 4, main = "Perbandingan Selang Penduga Proporsi", ylab='Dugaan Proporsi')