# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("NFLX", "AAPL", "VRTX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "VRTX"
# weights
weights <- c(0.3, 0.3, 0.4)
weights
## [1] 0.3 0.3 0.4
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.3
## 2 NFLX 0.3
## 3 VRTX 0.4
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.154
## 2 2013-02-28 0.0490
## 3 2013-03-28 0.0670
## 4 2013-04-30 0.174
## 5 2013-05-31 0.0383
## 6 2013-06-28 -0.0599
## 7 2013-07-31 0.0824
## 8 2013-08-30 0.0450
## 9 2013-09-30 0.0226
## 10 2013-10-31 0.0159
## # ℹ 50 more rows
# Risk free rate
rfr <- 0.0003
portfolio_sharpe_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rf = rfr,
performance_fun = SharpeRatio,
FUN = "StdDev")
portfolio_sharpe_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.365
# Custom function
# necessary because we would not be able to specify FUN = "StdDev" otherwise
calculate_rolling_sharpeRatio <- function(df) {
SharpeRatio(df,
Rf = rfr,
FUN = "StdDev")
}
# dump(list = "calculate_rolling_sharpeRatio",
# file = "00_scripts/calculate_rolling_sharpeRatio.R")
# Set the length of periods for rolling calculation
window <- 24
# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
align = "right",
FUN = calculate_rolling_sharpeRatio,
col_rename = "sharpeRatio") %>%
na.omit()
rolling_sharpe_tbl
## # A tibble: 37 × 3
## date returns sharpeRatio
## <date> <dbl> <dbl>
## 1 2014-12-31 -0.0236 0.574
## 2 2015-01-30 0.0648 0.555
## 3 2015-02-27 0.0829 0.571
## 4 2015-03-31 -0.0537 0.475
## 5 2015-04-30 0.106 0.469
## 6 2015-05-29 0.0636 0.483
## 7 2015-06-30 -0.0113 0.537
## 8 2015-07-31 0.0848 0.537
## 9 2015-08-31 -0.0415 0.462
## 10 2015-09-30 -0.120 0.326
## # ℹ 27 more rows
# Figure 7.5 Rolling Sharpe ggplot ----
rolling_sharpe_tbl %>%
ggplot(aes(date, sharpeRatio)) +
geom_line(color = "cornflowerblue") +
labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
y = "rolling Sharpe Ratio",
x = NULL) +
theme(plot.title = element_text(hjust = 0.5)) +
annotate(geom = "text",
x = as.Date("2016-06-01"), y = 0.5,
label = "This portfolio HAS FALLEN SINCE 2016.",
size = 5, color = "red")
How has your portfolio performed over time? Provide dates of the
structural breaks, if any. The Code Along Assignment 9 had one
structural break in November 2016. What do you think the reason is?
overtime my portfolio can be seen having a falling Sharpe ratio till the end of 2017 where it starts to follow an increasing value trend. Structural breaks can be seen at the start of 2017 with a up tick in Sharpe ratio value. I believe the structural break may have been due to a presidential election where risk is seen increasing due to the change of power dynamics between political powers.