library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tinytex)

setwd("C:/Users/ava/Downloads/data110")
hatecrimes2010 <- read_csv("hatecrimes2010.csv")
## Rows: 423 Columns: 44
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): County, Crime Type
## dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
names(hatecrimes2010) <- tolower(names(hatecrimes2010))
names(hatecrimes2010) <- gsub(" ","",names(hatecrimes2010))
head(hatecrimes2010)
## # A tibble: 6 × 44
##   county    year crimetype          `anti-male` `anti-female` `anti-transgender`
##   <chr>    <dbl> <chr>                    <dbl>         <dbl>              <dbl>
## 1 Albany    2016 Crimes Against Pe…           0             0                  0
## 2 Albany    2016 Property Crimes              0             0                  0
## 3 Allegany  2016 Property Crimes              0             0                  0
## 4 Bronx     2016 Crimes Against Pe…           0             0                  4
## 5 Bronx     2016 Property Crimes              0             0                  0
## 6 Broome    2016 Crimes Against Pe…           0             0                  0
## # ℹ 38 more variables: `anti-genderidentityexpression` <dbl>,
## #   `anti-age*` <dbl>, `anti-white` <dbl>, `anti-black` <dbl>,
## #   `anti-americanindian/alaskannative` <dbl>, `anti-asian` <dbl>,
## #   `anti-nativehawaiian/pacificislander` <dbl>,
## #   `anti-multi-racialgroups` <dbl>, `anti-otherrace` <dbl>,
## #   `anti-jewish` <dbl>, `anti-catholic` <dbl>, `anti-protestant` <dbl>,
## #   `anti-islamic(muslim)` <dbl>, `anti-multi-religiousgroups` <dbl>, …
summary(hatecrimes2010)
##     county               year       crimetype           anti-male       
##  Length:423         Min.   :2010   Length:423         Min.   :0.000000  
##  Class :character   1st Qu.:2011   Class :character   1st Qu.:0.000000  
##  Mode  :character   Median :2013   Mode  :character   Median :0.000000  
##                     Mean   :2013                      Mean   :0.007092  
##                     3rd Qu.:2015                      3rd Qu.:0.000000  
##                     Max.   :2016                      Max.   :1.000000  
##   anti-female      anti-transgender  anti-genderidentityexpression
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000              
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000              
##  Median :0.00000   Median :0.00000   Median :0.00000              
##  Mean   :0.01655   Mean   :0.04728   Mean   :0.05674              
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000              
##  Max.   :1.00000   Max.   :5.00000   Max.   :3.00000              
##    anti-age*         anti-white        anti-black    
##  Min.   :0.00000   Min.   : 0.0000   Min.   : 0.000  
##  1st Qu.:0.00000   1st Qu.: 0.0000   1st Qu.: 0.000  
##  Median :0.00000   Median : 0.0000   Median : 1.000  
##  Mean   :0.05201   Mean   : 0.3357   Mean   : 1.761  
##  3rd Qu.:0.00000   3rd Qu.: 0.0000   3rd Qu.: 2.000  
##  Max.   :9.00000   Max.   :11.0000   Max.   :18.000  
##  anti-americanindian/alaskannative   anti-asian    
##  Min.   :0.000000                  Min.   :0.0000  
##  1st Qu.:0.000000                  1st Qu.:0.0000  
##  Median :0.000000                  Median :0.0000  
##  Mean   :0.007092                  Mean   :0.1773  
##  3rd Qu.:0.000000                  3rd Qu.:0.0000  
##  Max.   :1.000000                  Max.   :8.0000  
##  anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
##  Min.   :0                           Min.   :0.00000         Min.   :0     
##  1st Qu.:0                           1st Qu.:0.00000         1st Qu.:0     
##  Median :0                           Median :0.00000         Median :0     
##  Mean   :0                           Mean   :0.08511         Mean   :0     
##  3rd Qu.:0                           3rd Qu.:0.00000         3rd Qu.:0     
##  Max.   :0                           Max.   :3.00000         Max.   :0     
##   anti-jewish     anti-catholic     anti-protestant   anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.02364   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :1.00000   Max.   :10.0000     
##  anti-multi-religiousgroups anti-atheism/agnosticism
##  Min.   : 0.00000           Min.   :0               
##  1st Qu.: 0.00000           1st Qu.:0               
##  Median : 0.00000           Median :0               
##  Mean   : 0.07565           Mean   :0               
##  3rd Qu.: 0.00000           3rd Qu.:0               
##  Max.   :10.00000           Max.   :0               
##  anti-religiouspracticegenerally anti-otherreligion anti-buddhist
##  Min.   :0.000000                Min.   :0.000      Min.   :0    
##  1st Qu.:0.000000                1st Qu.:0.000      1st Qu.:0    
##  Median :0.000000                Median :0.000      Median :0    
##  Mean   :0.007092                Mean   :0.104      Mean   :0    
##  3rd Qu.:0.000000                3rd Qu.:0.000      3rd Qu.:0    
##  Max.   :2.000000                Max.   :4.000      Max.   :0    
##  anti-easternorthodox(greek,russian,etc.)   anti-hindu      
##  Min.   :0.000000                         Min.   :0.000000  
##  1st Qu.:0.000000                         1st Qu.:0.000000  
##  Median :0.000000                         Median :0.000000  
##  Mean   :0.002364                         Mean   :0.002364  
##  3rd Qu.:0.000000                         3rd Qu.:0.000000  
##  Max.   :1.000000                         Max.   :1.000000  
##  anti-jehovahswitness  anti-mormon anti-otherchristian   anti-sikh
##  Min.   :0            Min.   :0    Min.   :0.00000     Min.   :0  
##  1st Qu.:0            1st Qu.:0    1st Qu.:0.00000     1st Qu.:0  
##  Median :0            Median :0    Median :0.00000     Median :0  
##  Mean   :0            Mean   :0    Mean   :0.01655     Mean   :0  
##  3rd Qu.:0            3rd Qu.:0    3rd Qu.:0.00000     3rd Qu.:0  
##  Max.   :0            Max.   :0    Max.   :3.00000     Max.   :0  
##  anti-hispanic       anti-arab       anti-otherethnicity/nationalorigin
##  Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000                   
##  1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000                   
##  Median : 0.0000   Median :0.00000   Median : 0.0000                   
##  Mean   : 0.3735   Mean   :0.06619   Mean   : 0.2837                   
##  3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000                   
##  Max.   :17.0000   Max.   :2.00000   Max.   :19.0000                   
##  anti-non-hispanic*  anti-gaymale    anti-gayfemale   anti-gay(maleandfemale)
##  Min.   :0          Min.   : 0.000   Min.   :0.0000   Min.   :0.0000         
##  1st Qu.:0          1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.0000         
##  Median :0          Median : 0.000   Median :0.0000   Median :0.0000         
##  Mean   :0          Mean   : 1.499   Mean   :0.2411   Mean   :0.1017         
##  3rd Qu.:0          3rd Qu.: 1.000   3rd Qu.:0.0000   3rd Qu.:0.0000         
##  Max.   :0          Max.   :36.000   Max.   :8.0000   Max.   :4.0000         
##  anti-heterosexual  anti-bisexual      anti-physicaldisability
##  Min.   :0.000000   Min.   :0.000000   Min.   :0.00000        
##  1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.00000        
##  Median :0.000000   Median :0.000000   Median :0.00000        
##  Mean   :0.002364   Mean   :0.004728   Mean   :0.01182        
##  3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.00000        
##  Max.   :1.000000   Max.   :1.000000   Max.   :1.00000        
##  anti-mentaldisability totalincidents    totalvictims    totaloffenders  
##  Min.   :0.000000      Min.   :  1.00   Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:0.000000      1st Qu.:  1.00   1st Qu.:  1.00   1st Qu.:  1.00  
##  Median :0.000000      Median :  3.00   Median :  3.00   Median :  3.00  
##  Mean   :0.009456      Mean   : 10.09   Mean   : 10.48   Mean   : 11.77  
##  3rd Qu.:0.000000      3rd Qu.: 10.00   3rd Qu.: 10.00   3rd Qu.: 11.00  
##  Max.   :1.000000      Max.   :101.00   Max.   :106.00   Max.   :113.00
hatecrimes2 <- hatecrimes2010 |>
  select(county, year, 'anti-transgender', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', `anti-multi-religiousgroups`, 'anti-gaymale', 'anti-hispanic', `anti-otherethnicity/nationalorigin`) |>
  group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 × 12
## # Groups:   county, year [4]
##   county    year `anti-transgender` `anti-white` `anti-jewish` `anti-catholic`
##   <chr>    <dbl>              <dbl>        <dbl>         <dbl>           <dbl>
## 1 Albany    2016                  0            0             0               0
## 2 Albany    2016                  0            0             0               0
## 3 Allegany  2016                  0            0             0               0
## 4 Bronx     2016                  4            1             0               0
## 5 Bronx     2016                  0            1             1               0
## 6 Broome    2016                  0            0             0               0
## # ℹ 6 more variables: `anti-age*` <dbl>, `anti-islamic(muslim)` <dbl>,
## #   `anti-multi-religiousgroups` <dbl>, `anti-gaymale` <dbl>,
## #   `anti-hispanic` <dbl>, `anti-otherethnicity/nationalorigin` <dbl>
dim(hatecrimes2)
## [1] 423  12
# There are currently 12 variables with 423 rows.
summary(hatecrimes2)
##     county               year      anti-transgender    anti-white     
##  Length:423         Min.   :2010   Min.   :0.00000   Min.   : 0.0000  
##  Class :character   1st Qu.:2011   1st Qu.:0.00000   1st Qu.: 0.0000  
##  Mode  :character   Median :2013   Median :0.00000   Median : 0.0000  
##                     Mean   :2013   Mean   :0.04728   Mean   : 0.3357  
##                     3rd Qu.:2015   3rd Qu.:0.00000   3rd Qu.: 0.0000  
##                     Max.   :2016   Max.   :5.00000   Max.   :11.0000  
##   anti-jewish     anti-catholic       anti-age*       anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.05201   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :9.00000   Max.   :10.0000     
##  anti-multi-religiousgroups  anti-gaymale    anti-hispanic    
##  Min.   : 0.00000           Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.: 0.00000           1st Qu.: 0.000   1st Qu.: 0.0000  
##  Median : 0.00000           Median : 0.000   Median : 0.0000  
##  Mean   : 0.07565           Mean   : 1.499   Mean   : 0.3735  
##  3rd Qu.: 0.00000           3rd Qu.: 1.000   3rd Qu.: 0.0000  
##  Max.   :10.00000           Max.   :36.000   Max.   :17.0000  
##  anti-otherethnicity/nationalorigin
##  Min.   : 0.0000                   
##  1st Qu.: 0.0000                   
##  Median : 0.0000                   
##  Mean   : 0.2837                   
##  3rd Qu.: 0.0000                   
##  Max.   :19.0000
hatelong <- hatecrimes2 |> 
    pivot_longer(
        cols = 3:12,
        names_to = "victim_cat",
        values_to = "crimecount")
hatecrimplot <-hatelong |> 
  ggplot(aes(year, crimecount))+
  geom_point()+
  aes(color = victim_cat)+
  facet_wrap(~victim_cat)
hatecrimplot 

hatenew <- hatelong |>
  filter( victim_cat %in% c("anti-black", "anti-jewish", "anti-gaymale"))|>
  group_by(year, county) |>
  arrange(desc(crimecount))
hatenew
## # A tibble: 846 × 4
## # Groups:   year, county [277]
##    county   year victim_cat  crimecount
##    <chr>   <dbl> <chr>            <dbl>
##  1 Kings    2012 anti-jewish         82
##  2 Kings    2016 anti-jewish         51
##  3 Suffolk  2014 anti-jewish         48
##  4 Suffolk  2012 anti-jewish         48
##  5 Kings    2011 anti-jewish         44
##  6 Kings    2013 anti-jewish         41
##  7 Kings    2010 anti-jewish         39
##  8 Nassau   2011 anti-jewish         38
##  9 Suffolk  2013 anti-jewish         37
## 10 Nassau   2016 anti-jewish         36
## # ℹ 836 more rows
plot2 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=year, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot2

counties <- hatenew |>
  group_by(year, county)|>
  summarize(sum = sum(crimecount)) |>
  arrange(desc(sum))
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
counties 
## # A tibble: 277 × 3
## # Groups:   year [7]
##     year county     sum
##    <dbl> <chr>    <dbl>
##  1  2012 Kings      126
##  2  2016 Kings       95
##  3  2010 Kings       94
##  4  2013 Kings       90
##  5  2014 Kings       90
##  6  2015 Kings       82
##  7  2016 New York    79
##  8  2011 Kings       78
##  9  2013 New York    67
## 10  2015 New York    63
## # ℹ 267 more rows
plot3 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot3

counties2 <- hatenew |>
  group_by(county)|>
  summarize(sum = sum(crimecount)) |>
  slice_max(order_by = sum, n=5)
counties2 
## # A tibble: 5 × 2
##   county     sum
##   <chr>    <dbl>
## 1 Kings      655
## 2 New York   405
## 3 Suffolk    264
## 4 Nassau     227
## 5 Queens     205
plot4 <- hatenew |>
  filter(county %in% c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(y = "Number of Hate Crime Incidents",
       title = "5 Counties in NY with Highest Incidents of Hate Crimes",
       subtitle = "Between 2010-2016", 
       fill = "Hate Crime Type",
      caption = "Source: NY State Division of Criminal Justice Services")
plot4

setwd("C:/Users/ava/Downloads/data110")
nypop <- read_csv("newyorkpopulation.csv")
## Rows: 62 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Geography
## dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop |>
  rename(county = Geography) |>
  gather("year", "population", 2:8) 
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 × 3
##   county                  year population
##   <chr>                  <dbl>      <dbl>
## 1 Albany , New York       2010     304078
## 2 Allegany , New York     2010      48949
## 3 Bronx , New York        2010    1388240
## 4 Broome , New York       2010     200469
## 5 Cattaraugus , New York  2010      80249
## 6 Cayuga , New York       2010      79844
nypoplong12 <- nypoplong |>
  filter(year == 2012) |>
  arrange(desc(population)) |>
  head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
## # A tibble: 10 × 3
##    county       year population
##    <chr>       <dbl>      <dbl>
##  1 Kings        2012    2572282
##  2 Queens       2012    2278024
##  3 New York     2012    1625121
##  4 Suffolk      2012    1499382
##  5 Bronx        2012    1414774
##  6 Nassau       2012    1350748
##  7 Westchester  2012     961073
##  8 Erie         2012     920792
##  9 Monroe       2012     748947
## 10 Richmond     2012     470978
counties12 <- counties |>
  filter(year == 2012) |>
  arrange(desc(sum)) 
counties12
## # A tibble: 41 × 3
## # Groups:   year [1]
##     year county        sum
##    <dbl> <chr>       <dbl>
##  1  2012 Kings         126
##  2  2012 New York       61
##  3  2012 Suffolk        57
##  4  2012 Queens         46
##  5  2012 Nassau         33
##  6  2012 Bronx          15
##  7  2012 Richmond       15
##  8  2012 Westchester    10
##  9  2012 Erie            9
## 10  2012 Multiple        6
## # ℹ 31 more rows
datajoin <- counties12 |>
  full_join(nypoplong12, by=c("county", "year"))
datajoin 
## # A tibble: 41 × 4
## # Groups:   year [1]
##     year county        sum population
##    <dbl> <chr>       <dbl>      <dbl>
##  1  2012 Kings         126    2572282
##  2  2012 New York       61    1625121
##  3  2012 Suffolk        57    1499382
##  4  2012 Queens         46    2278024
##  5  2012 Nassau         33    1350748
##  6  2012 Bronx          15    1414774
##  7  2012 Richmond       15     470978
##  8  2012 Westchester    10     961073
##  9  2012 Erie            9     920792
## 10  2012 Multiple        6         NA
## # ℹ 31 more rows
datajoinrate <- datajoin |>
  mutate(rate = sum/population*100000) |>
  arrange(desc(rate))
datajoinrate
## # A tibble: 41 × 5
## # Groups:   year [1]
##     year county        sum population  rate
##    <dbl> <chr>       <dbl>      <dbl> <dbl>
##  1  2012 Kings         126    2572282 4.90 
##  2  2012 Suffolk        57    1499382 3.80 
##  3  2012 New York       61    1625121 3.75 
##  4  2012 Richmond       15     470978 3.18 
##  5  2012 Nassau         33    1350748 2.44 
##  6  2012 Queens         46    2278024 2.02 
##  7  2012 Bronx          15    1414774 1.06 
##  8  2012 Westchester    10     961073 1.04 
##  9  2012 Erie            9     920792 0.977
## 10  2012 Monroe          4     748947 0.534
## # ℹ 31 more rows
dt <- datajoinrate[,c("county","rate")]
dt
## # A tibble: 41 × 2
##    county       rate
##    <chr>       <dbl>
##  1 Kings       4.90 
##  2 Suffolk     3.80 
##  3 New York    3.75 
##  4 Richmond    3.18 
##  5 Nassau      2.44 
##  6 Queens      2.02 
##  7 Bronx       1.06 
##  8 Westchester 1.04 
##  9 Erie        0.977
## 10 Monroe      0.534
## # ℹ 31 more rows

essay

The Hate Crime 2010 data set is notable for its comprehensiveness and depth, with an extensive set of variables which records covering a wide range of hate crimes. Its comprehensive coverage guarantees that it catches every one of these crimes so it will provide a precise picture of their prevalence and characteristics across several jurisdictions.

One of the data set’s significant benefits is the inclusion of numerous counties, which improves its representativeness and enables deeper insights into hate crime patterns at both the local and regional levels. The data collection provides a more thorough knowledge of the occurrence and trends of hate crimes by pulling from a wide variety of geographic locations, which allows an analysis of inequalities and distinctions among various populations.

While the Hate Crime 2010 data set provides useful insights into the prevalence and nature of hate crimes, one issue is the lack of transparency in the data collection process. Hate crimes are typically reported and identified by law enforcement officers who have been trained to recognize such incidents and follow applicable laws and reporting protocols. However, despite reports from trustworthy government agencies such as the FBI in the United States and national statistical agencies in other countries, the possibility of bias or error in data collection cannot be dismissed. Human judgment is important in identifying and categorizing hate crimes, but there may be mistakes and confusions that affect the data’s accuracy and reliability. Therefore, while the data set offers useful information, caution should be exercised when interpreting its findings, and efforts to reduce potential biases in data collection should be prioritized in order to improve its credibility and usefulness for research and policymaking.

By identifying which groups are most frequently targeted, researchers can gain insight into the motivations, attitudes, and beliefs that drive people to commit such acts of violence. This investigation looks into the role of prejudice and stereotypes, the impact of group dynamics and socialization processes, individual-level factors like personality traits and past experiences, and the interaction between individual motivations and broader socio-cultural contexts. Unraveling these complexities can help to inform targeted interventions and preventive strategies for addressing the underlying causes of hate-motivated violence and fostering a more inclusive society.

Secondly, the availability of hate crime data with geographical specifics allows researchers to conduct extensive analyses of the contextual elements that influence hate crime rates at the state level. Researchers can gain complex insights into the structural processes that contribute to hate crimes by investigating the socioeconomic, demographic, and political characteristics of states with higher incidence. Additionally In order to determine how economic marginalization contributes to intergroup conflict, it is necessary to examine economic circumstances, such as income disparity and resource availability. It is possible to investigate demographic variables like religious variety and racial makeup to learn more about how cultural dynamics affect the prevalence of hate crimes. 

After seeing these results, I strongly support giving top priority to studies that attempt to fully comprehend the dynamics and underlying causes of hate crimes. Getting comprehensive information about hate crime trends and events is essential for creating methods for intervention and prevention that work. Furthermore, it is important that we raise awareness and educate our communities about the groups that are most frequently the targets of hate crimes. In order to foster empathy, understanding, and respect for diversity, it is necessary to conduct projects in a variety of environments. We can attempt to decrease the occurrence of hate-motivated violence and promote greater unity in society by promoting a diverse and supportive culture.