# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
#choose stocks
symbols <- c("COST", "TSLA", "NFLX", "GOOG")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "COST" "GOOG" "NFLX" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 COST 0.25
## 2 GOOG 0.25
## 3 NFLX 0.25
## 4 TSLA 0.25
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.196
## 2 2013-02-28 0.0265
## 3 2013-03-28 0.0321
## 4 2013-04-30 0.136
## 5 2013-05-31 0.177
## 6 2013-06-28 0.0108
## 7 2013-07-31 0.110
## 8 2013-08-30 0.0716
## 9 2013-09-30 0.0707
## 10 2013-10-31 0.00978
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.0592
# Data transformation: calcualte skewdness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
#add portfolio skewdness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 5 × 2
## asset skew
## <chr> <dbl>
## 1 COST -0.244
## 2 GOOG 0.784
## 3 NFLX 0.909
## 4 TSLA 0.944
## 5 Portfolio 0.0592
# Plot Skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio"))
labs(y = "Skewness")
## $y
## [1] "Skewness"
##
## attr(,"class")
## [1] "labels"