x <- 1:30
n <- length(x)
b0 <- -90
b1 <- 1.2
set.seed(2)
e <- rnorm(n, mean = 0, sd = 5)
y <- b0 + b1 * x + e
ybar <- mean(y)
d <- data.frame(x, y)
d
## x y
## 1 1 -93.28457
## 2 2 -86.67575
## 3 3 -78.46077
## 4 4 -90.85188
## 5 5 -84.40126
## 6 6 -82.13790
## 7 7 -78.06023
## 8 8 -81.59849
## 9 9 -69.27763
## 10 10 -78.69394
## 11 11 -74.71175
## 12 12 -70.69124
## 13 13 -76.36348
## 14 14 -78.39834
## 15 15 -63.08886
## 16 16 -82.35535
## 17 17 -65.20698
## 18 18 -68.22097
## 19 19 -62.13586
## 20 20 -63.83867
## 21 21 -54.34590
## 22 22 -69.59963
## 23 23 -54.45181
## 24 24 -51.42674
## 25 25 -59.97531
## 26 26 -71.05853
## 27 27 -55.21381
## 28 28 -59.38279
## 29 29 -51.23898
## 30 30 -52.55182
COL <- c(rgb(255, 0, 0, 255, max = 255),
rgb( 0, 0, 255, 255, max = 255),
rgb( 0, 155, 0, 255, max = 255))
matplot(x, y, pch = 1, col = COL[1])
grid()

fit <- lm(y ~ x, data = d)
summary(fit)
##
## Call:
## lm(formula = y ~ x, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.5989 -2.8452 0.0335 3.6787 9.2076
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -89.1474 2.2356 -39.876 < 2e-16 ***
## x 1.2188 0.1259 9.678 1.97e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.97 on 28 degrees of freedom
## Multiple R-squared: 0.7699, Adjusted R-squared: 0.7616
## F-statistic: 93.66 on 1 and 28 DF, p-value: 1.972e-10
matplot(x, y, pch = 1, col = COL[1], main = '回帰分析')
grid()
matlines(x, fit$fitted, col = COL[2])
library(latex2exp)
legend('topleft', lty = c(NA, 1), pch = c(1, NA), col = COL,
legend = c('Data', TeX('$\\hat{y}_i = b_0 + b_1 x_i $')))
library(plotly)
## 要求されたパッケージ ggplot2 をロード中です
##
## 次のパッケージを付け加えます: 'plotly'
## 以下のオブジェクトは 'package:ggplot2' からマスクされています:
##
## last_plot
## 以下のオブジェクトは 'package:latex2exp' からマスクされています:
##
## TeX
## 以下のオブジェクトは 'package:stats' からマスクされています:
##
## filter
## 以下のオブジェクトは 'package:graphics' からマスクされています:
##
## layout

plot_ly() |>
add_trace(x = x, y = y, mode = 'markers', name = 'Data') |>
add_trace(x = x, y = fit$fitted, mode = 'lines', name = '$\\hat{y}_i = b_0 + b_1 x_i $') |>
layout(font = list(size = 11, color = rainbow(70), family = 'UD Digi Kyokasho NK-R'),
title = '回帰分析',
xaxis = list(title = 'x'),
yaxis = list(title = 'y')) |>
config(mathjax = 'cdn')
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter