# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NFLX", "AAPL", "VRTX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "VRTX"
# weights
weights <- c(0.25, 0.25, 0.2)
weights
## [1] 0.25 0.25 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 NFLX 0.25
## 3 VRTX 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.119
## 2 2013-02-28 0.0349
## 3 2013-03-28 0.0344
## 4 2013-04-30 0.100
## 5 2013-05-31 0.0260
## 6 2013-06-28 -0.0495
## 7 2013-07-31 0.0691
## 8 2013-08-30 0.0455
## 9 2013-09-30 0.0177
## 10 2013-10-31 0.0214
## # ℹ 50 more rows
asset_returns_skew_tbl <- asset_returns_tbl %>%
# skewness for each asset
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# skewness of portfolio
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_returns_skew_tbl %>%
ggplot(aes(asset, skew, color = asset)) +
geom_point() +
# Add label for portfolio
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_skew_tbl %>%
filter(asset == "Portfolio"),
size = 5,
show.legend = FALSE) +
labs(y = "skewness")
# skewness of portfolio
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
## # A tibble: 2 × 2
## asset skew
## <chr> <dbl>
## 1 Portfolio -0.620
## 2 <NA> NA
asset_returns_skew_tbl %>%
ggplot(aes(asset, skew, color = asset)) +
geom_point() +
# Add label for portfolio
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_skew_tbl %>%
filter(asset == "Portfolio"),
size = 5,
show.legend = FALSE) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Among these assets, Netflix stands out with a positive skewness of +1.8, indicating that its return distribution has a longer right tail, suggesting a higher likelihood of extreme positive returns compared to the other assets in my portfolio. This means that, statistically, Netflix is more likely to experience significant positive returns beyond the average return of the portfolio.