# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("WMT", "TGT", "COST")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 180 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 COST 2013-01-31 0.0359
## 2 COST 2013-02-28 -0.00765
## 3 COST 2013-03-28 0.0465
## 4 COST 2013-04-30 0.0216
## 5 COST 2013-05-31 0.0138
## 6 COST 2013-06-28 0.00854
## 7 COST 2013-07-31 0.0601
## 8 COST 2013-08-30 -0.0458
## 9 COST 2013-09-30 0.0291
## 10 COST 2013-10-31 0.0243
## # ℹ 170 more rows
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "COST" "TGT" "WMT"
weights <- c(0.35, 0.3, 0.25)
weights
## [1] 0.35 0.30 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 COST 0.35
## 2 TGT 0.3
## 3 WMT 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months" )
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0250
## 2 2013-02-28 0.0144
## 3 2013-03-28 0.0569
## 4 2013-04-30 0.0262
## 5 2013-05-31 -0.00611
## 6 2013-06-28 -0.000959
## 7 2013-07-31 0.0426
## 8 2013-08-30 -0.0645
## 9 2013-09-30 0.0167
## 10 2013-10-31 0.0215
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.404
window = 24
# Transform Data: calculate 24-Month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-portfolio.returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = str_glue("Downside risk dropped towards the end of 2016"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
Ovetime, the downside risk of the portfolio has decreased drastically. At the beginning of 2015 the kurtosis was around 1.25, which grew to 3.15 at the beginning of 2016, only to drop to -1.15 towards the end of 2016. Although we can see it starting to make its way back up to positive kurtosise around 2018 where it is settled at -0.75, it's still not quiet positive. As a whole, the downside risk has decreased overtime.