data <- read_excel("../00_data/myData.xlsx")
data %>%
select(country, food_category, co2_emmission) %>%
filter(country %in% c("Argentina", "Bermuda", "Japan"))
## # A tibble: 33 × 3
## country food_category co2_emmission
## <chr> <chr> <dbl>
## 1 Argentina Pork 37.2
## 2 Argentina Poultry 41.5
## 3 Argentina Beef 1712
## 4 Argentina Lamb & Goat 54.6
## 5 Argentina Fish 6.96
## 6 Argentina Eggs 10.5
## 7 Argentina Milk - inc. cheese 278.
## 8 Argentina Wheat and Wheat Products 19.7
## 9 Argentina Rice 11.2
## 10 Argentina Soybeans 0
## # ℹ 23 more rows
data_small <- data %>%
select(country, food_category, co2_emmission) %>%
filter(country %in% c("Argentina", "Bermuda", "Japan"))
data_small %>% pivot_wider(names_from = food_category, values_from = co2_emmission)
## # A tibble: 3 × 12
## country Pork Poultry Beef `Lamb & Goat` Fish Eggs `Milk - inc. cheese`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Argentina 37.2 41.5 1712 54.6 6.96 10.5 278.
## 2 Bermuda 100. 35.0 1023. 94.9 53.0 13.7 136.
## 3 Japan 73.0 20.9 282. 4.9 49.7 17.6 103.
## # ℹ 4 more variables: `Wheat and Wheat Products` <dbl>, Rice <dbl>,
## # Soybeans <dbl>, `Nuts inc. Peanut Butter` <dbl>
data_wide <- data_small %>% pivot_wider(names_from = food_category, values_from = co2_emmission)
data_wide %>%
pivot_longer(Pork:`Nuts inc. Peanut Butter`, names_to = "food_category", values_to = "co2_emmission")
## # A tibble: 33 × 3
## country food_category co2_emmission
## <chr> <chr> <dbl>
## 1 Argentina Pork 37.2
## 2 Argentina Poultry 41.5
## 3 Argentina Beef 1712
## 4 Argentina Lamb & Goat 54.6
## 5 Argentina Fish 6.96
## 6 Argentina Eggs 10.5
## 7 Argentina Milk - inc. cheese 278.
## 8 Argentina Wheat and Wheat Products 19.7
## 9 Argentina Rice 11.2
## 10 Argentina Soybeans 0
## # ℹ 23 more rows
data %>%
unite(col = "newName", country:food_category, sep = "/", remove = FALSE)
## # A tibble: 1,430 × 5
## newName country food_category consumption co2_emmission
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Argentina/Pork Argent… Pork 10.5 37.2
## 2 Argentina/Poultry Argent… Poultry 38.7 41.5
## 3 Argentina/Beef Argent… Beef 55.5 1712
## 4 Argentina/Lamb & Goat Argent… Lamb & Goat 1.56 54.6
## 5 Argentina/Fish Argent… Fish 4.36 6.96
## 6 Argentina/Eggs Argent… Eggs 11.4 10.5
## 7 Argentina/Milk - inc. cheese Argent… Milk - inc. … 195. 278.
## 8 Argentina/Wheat and Wheat Pr… Argent… Wheat and Wh… 103. 19.7
## 9 Argentina/Rice Argent… Rice 8.77 11.2
## 10 Argentina/Soybeans Argent… Soybeans 0 0
## # ℹ 1,420 more rows
data_united <- data %>%
unite(col = "newName", country:food_category, sep = "/", remove = FALSE)
data_united %>%
separate(col = newName, into = c("country", "food_category"), sep = "/")
## # A tibble: 1,430 × 4
## country food_category consumption co2_emmission
## <chr> <chr> <dbl> <dbl>
## 1 Argentina Pork 10.5 37.2
## 2 Argentina Poultry 38.7 41.5
## 3 Argentina Beef 55.5 1712
## 4 Argentina Lamb & Goat 1.56 54.6
## 5 Argentina Fish 4.36 6.96
## 6 Argentina Eggs 11.4 10.5
## 7 Argentina Milk - inc. cheese 195. 278.
## 8 Argentina Wheat and Wheat Products 103. 19.7
## 9 Argentina Rice 8.77 11.2
## 10 Argentina Soybeans 0 0
## # ℹ 1,420 more rows
read_excel("../00_data/dataMissing.xlsx")
## # A tibble: 33 × 4
## country food_category consumption co2_emmission
## <chr> <chr> <dbl> <dbl>
## 1 Argentina Pork 10.5 37.2
## 2 <NA> Poultry 38.7 41.5
## 3 <NA> Beef 55.5 1712
## 4 <NA> Lamb & Goat 1.56 54.6
## 5 <NA> Fish 4.36 6.96
## 6 <NA> Eggs 11.4 10.5
## 7 <NA> Milk - inc. cheese 195. 278.
## 8 <NA> Wheat and Wheat Products 103. 19.7
## 9 <NA> Rice 8.77 11.2
## 10 <NA> Soybeans 0 0
## # ℹ 23 more rows
data_missing <- read_excel("../00_data/dataMissing.xlsx")
data_missing %>%
fill(country, .direction = "down")
## # A tibble: 33 × 4
## country food_category consumption co2_emmission
## <chr> <chr> <dbl> <dbl>
## 1 Argentina Pork 10.5 37.2
## 2 Argentina Poultry 38.7 41.5
## 3 Argentina Beef 55.5 1712
## 4 Argentina Lamb & Goat 1.56 54.6
## 5 Argentina Fish 4.36 6.96
## 6 Argentina Eggs 11.4 10.5
## 7 Argentina Milk - inc. cheese 195. 278.
## 8 Argentina Wheat and Wheat Products 103. 19.7
## 9 Argentina Rice 8.77 11.2
## 10 Argentina Soybeans 0 0
## # ℹ 23 more rows