library(readxl)
Base_Dinero <- read_excel("BaseDeDatos.xlsx", sheet = "Datos")
head(Base_Dinero)
#dinero.ts = ts(Base_Dinero, start=2000, frequency=12)
#plot(dinero.ts)
tcr.ts=ts(Base_Dinero$tcr,start=2008,frequency=12)
tc.ts=ts(Base_Dinero$tc,start=2008,frequency=12)
inf.ts=ts(Base_Dinero$inf,start=2008,frequency=12)
brecha_pib.ts=ts(Base_Dinero$brecha_pib,start=2008,frequency=12)
brecha_inf.ts=ts(Base_Dinero$brecha_inf,start=2008,frequency=12)
igae.ts=ts(Base_Dinero$igae,start=2008,frequency=12)
tasaO.ts=ts(Base_Dinero$tasaO,start=2008,frequency=12)
rend_bon.ts=ts(Base_Dinero$rend_bon,start=2008,frequency=12)
fed.ts=ts(Base_Dinero$fed,start=2008,frequency=12)
m2 = lm(tasaO.ts ~ brecha_inf.ts + rend_bon.ts + tc.ts)
summary(m2)
## 
## Call:
## lm(formula = tasaO.ts ~ brecha_inf.ts + rend_bon.ts + tc.ts)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.54598 -0.72698  0.09437  0.82582  2.20520 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -4.30285    0.47515  -9.056  < 2e-16 ***
## brecha_inf.ts -0.15393    0.06565  -2.345  0.02006 *  
## rend_bon.ts    1.38705    0.06108  22.709  < 2e-16 ***
## tc.ts          0.07349    0.02254   3.260  0.00132 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.05 on 192 degrees of freedom
## Multiple R-squared:  0.804,  Adjusted R-squared:  0.8009 
## F-statistic: 262.5 on 3 and 192 DF,  p-value: < 2.2e-16
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
pib.ts_arima=auto.arima(brecha_pib.ts, stepwise=FALSE, approximation=FALSE)
summary(pib.ts_arima)
## Series: brecha_pib.ts 
## ARIMA(1,0,3) with zero mean 
## 
## Coefficients:
##          ar1     ma1     ma2      ma3
##       0.8449  0.1145  0.1003  -0.3113
## s.e.  0.0704  0.1001  0.0891   0.1078
## 
## sigma^2 = 2.722:  log likelihood = -375
## AIC=760   AICc=760.32   BIC=776.39
## 
## Training set error measures:
##                        ME     RMSE       MAE      MPE     MAPE      MASE
## Training set -0.003199852 1.632785 0.5700529 21.65207 46.02203 0.2422843
##                     ACF1
## Training set -0.01824328
tc.ts_arima=auto.arima(tc.ts, stepwise = FALSE, approximation = FALSE)
summary(tc.ts_arima)
## Series: tc.ts 
## ARIMA(0,1,0) 
## 
## sigma^2 = 0.4187:  log likelihood = -191.8
## AIC=385.61   AICc=385.63   BIC=388.88
## 
## Training set error measures:
##                      ME      RMSE       MAE       MPE     MAPE      MASE
## Training set 0.03225329 0.6453981 0.4365655 0.1684118 2.574994 0.2924412
##                     ACF1
## Training set 0.005354766
brecha_inf.ts_arima=auto.arima(brecha_inf.ts, stepwise = FALSE, approximation = FALSE)
summary(brecha_inf.ts_arima)
## Series: brecha_inf.ts 
## ARIMA(1,1,0)(2,0,2)[12] 
## 
## Coefficients:
##          ar1    sar1     sar2     sma1    sma2
##       0.3987  0.4355  -0.2244  -1.4279  0.6598
## s.e.  0.0692  0.1946   0.1029   0.2035  0.2245
## 
## sigma^2 = 0.06383:  log likelihood = -16.1
## AIC=44.19   AICc=44.64   BIC=63.83
## 
## Training set error measures:
##                      ME      RMSE       MAE      MPE     MAPE      MASE
## Training set 0.02041485 0.2487423 0.1840467 225.1235 290.8491 0.1270269
##                    ACF1
## Training set 0.01306303
rend_bon.ts_arima=auto.arima(rend_bon.ts, stepwise = FALSE, approximation = FALSE)
summary(rend_bon.ts_arima)
## Series: rend_bon.ts 
## ARIMA(0,1,0)(1,0,1)[12] 
## 
## Coefficients:
##          sar1    sma1
##       -0.6687  0.8532
## s.e.   0.1295  0.1044
## 
## sigma^2 = 0.1306:  log likelihood = -78.43
## AIC=162.87   AICc=162.99   BIC=172.69
## 
## Training set error measures:
##                      ME      RMSE       MAE        MPE     MAPE      MASE
## Training set 0.01493576 0.3586097 0.2685993 0.03862169 4.118367 0.2657497
##                     ACF1
## Training set -0.05078733
f_pib.ts=forecast(pib.ts_arima,h=2)
f_pib.ts1 = -0.03351422 
f_pib.ts2 = -0.05402005
f_tc.ts=forecast(tc.ts_arima, h=2)
f_tc.ts1=17.1552
f_tc.ts2=17.1552
f_brecha_inf.ts=forecast(brecha_inf.ts_arima,h=2)
f_brecha_inf.ts1=2.230971   
f_brecha_inf.ts2=2.643418   
f_rend_bon.ts=forecast(rend_bon.ts_arima,h=2)
f_rend_bon.ts
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## May 2024       10.56240 10.09919 11.02561 9.853983 11.27081
## Jun 2024       10.53954  9.88447 11.19462 9.537695 11.54139
f_rend_bon.ts1=10.56240
f_rend_bon.ts2=10.53954
pronosticoM2M = -4.30285 - 0.15393 *(f_brecha_inf.ts1) + 1.38705*(f_rend_bon.ts1) + 0.07349*(f_tc.ts1)
pronosticoM2M
## [1] 11.26505
pronosticoM2J = -4.30285 - 0.15393 *(f_brecha_inf.ts2) + 1.38705*(f_rend_bon.ts2) + 0.07349*(f_tc.ts2)
pronosticoM2J
## [1] 11.16985

#MODELO

m3 = lm(tasaO.ts ~ brecha_inf.ts + rend_bon.ts + tc.ts + brecha_pib.ts)
summary(m3)
## 
## Call:
## lm(formula = tasaO.ts ~ brecha_inf.ts + rend_bon.ts + tc.ts + 
##     brecha_pib.ts)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.53071 -0.74140  0.05002  0.81156  2.20071 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -4.14633    0.47956  -8.646 2.14e-15 ***
## brecha_inf.ts -0.13148    0.06634  -1.982 0.048909 *  
## rend_bon.ts    1.34901    0.06404  21.066  < 2e-16 ***
## tc.ts          0.07724    0.02249   3.435 0.000727 ***
## brecha_pib.ts  0.04809    0.02583   1.862 0.064147 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.043 on 191 degrees of freedom
## Multiple R-squared:  0.8075, Adjusted R-squared:  0.8034 
## F-statistic: 200.3 on 4 and 191 DF,  p-value: < 2.2e-16
pronosticoM3M = -4.14633 - 0.13148 *(f_brecha_inf.ts1) + 1.34901*(f_rend_bon.ts1) + 0.07724*(f_tc.ts1) + 0.04809*(f_pib.ts1)
pronosticoM3M
## [1] 11.13258
pronosticoM3J = -4.14633 - 0.13148 *(f_brecha_inf.ts2) + 1.34901*(f_rend_bon.ts2) + 0.07724*(f_tc.ts2) + 0.04809*(f_pib.ts2)
pronosticoM3J
## [1] 11.04653