setwd("C:/Work Files/RDA/Consults/Ewa Golebiowska")
######Packages#####
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(haven)
library(cjoint)
## Loading required package: sandwich
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
##
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
##
## Loading required package: survival
##
## Attaching package: 'survey'
##
## The following object is masked from 'package:graphics':
##
## dotchart
##
## cjoint: AMCE Estimator for Conjoint Experiments
## Version: 2.1.1
## Authors: Soubhik Barari, Elissa Berwick, Jens Hainmueller, Daniel Hopkins, Sean Liu, Anton Strezhnev, Teppei Yamamoto
##
##
## Attaching package: 'cjoint'
##
## The following object is masked from 'package:tibble':
##
## view
TESS_Data_Orig <-read_sav("TESS conjoint data.sav")
The first step in data restructuring: Create a new set of variables for each voting choice task which will identify whether that voting choice is either a Republican or Democratic primary vote (both candidates are of the same party) or a general election with opposing parties. 1 = Democratic Primary, 2 = Republican Primary, 3 = General Election.
TESS_Data_New <- TESS_Data_Orig %>%
mutate(Q1_Partisan_Comp = case_when(
Q9A_Att7Party == 1 & Q9B_Att7Party == 1 ~ 1,
Q9A_Att7Party == 2 & Q9B_Att7Party == 2 ~ 2,
Q9A_Att7Party == 1 & Q9B_Att7Party == 2 ~ 3,
Q9A_Att7Party == 2 & Q9B_Att7Party == 1 ~ 3
))
TESS_Data_New_2<- TESS_Data_New %>%
mutate(Q2_Partisan_Comp = case_when(
Q10A_Att7Party == 1 & Q10B_Att7Party == 1 ~ 1,
Q10A_Att7Party == 2 & Q10B_Att7Party == 2 ~ 2,
Q10A_Att7Party == 1 & Q10B_Att7Party == 2 ~ 3,
Q10A_Att7Party == 2 & Q10B_Att7Party == 1 ~ 3
))
TESS_Data_New_3 <- TESS_Data_New_2 %>%
mutate(Q3_Partisan_Comp = case_when(
Q11A_Att7Party == 1 & Q11B_Att7Party == 1 ~ 1,
Q11A_Att7Party == 2 & Q11B_Att7Party == 2 ~ 2,
Q11A_Att7Party == 1 & Q11B_Att7Party == 2 ~ 3,
Q11A_Att7Party == 2 & Q11B_Att7Party == 1 ~ 3
))
TESS_Data_New_4 <- TESS_Data_New_3 %>%
mutate(Q4_Partisan_Comp = case_when(
Q12A_Att7Party == 1 & Q12B_Att7Party == 1 ~ 1,
Q12A_Att7Party == 2 & Q12B_Att7Party == 2 ~ 2,
Q12A_Att7Party == 1 & Q12B_Att7Party == 2 ~ 3,
Q12A_Att7Party == 2 & Q12B_Att7Party == 1 ~ 3
))
TESS_Data_New_5 <- TESS_Data_New_4 %>%
mutate(Q5_Partisan_Comp = case_when(
Q13A_Att7Party == 1 & Q13B_Att7Party == 1 ~ 1,
Q13A_Att7Party == 2 & Q13B_Att7Party == 2 ~ 2,
Q13A_Att7Party == 1 & Q13B_Att7Party == 2 ~ 3,
Q13A_Att7Party == 2 & Q13B_Att7Party == 1 ~ 3
))
TESS_Data_New_6 <- TESS_Data_New_5 %>%
mutate(Q6_Partisan_Comp = case_when(
Q14A_Att7Party == 1 & Q14B_Att7Party == 1 ~ 1,
Q14A_Att7Party == 2 & Q14B_Att7Party == 2 ~ 2,
Q14A_Att7Party == 1 & Q14B_Att7Party == 2 ~ 3,
Q14A_Att7Party == 2 & Q14B_Att7Party == 1 ~ 3
))
TESS_Data_New_7 <- TESS_Data_New_6 %>%
mutate(Q7_Partisan_Comp = case_when(
Q15A_Att7Party == 1 & Q15B_Att7Party == 1 ~ 1,
Q15A_Att7Party == 2 & Q15B_Att7Party == 2 ~ 2,
Q15A_Att7Party == 1 & Q15B_Att7Party == 2 ~ 3,
Q15A_Att7Party == 2 & Q15B_Att7Party == 1 ~ 3
))
TESS_Data_New_8 <- TESS_Data_New_7 %>%
mutate(Q8_Partisan_Comp = case_when(
Q16A_Att7Party == 1 & Q16B_Att7Party == 1 ~ 1,
Q16A_Att7Party == 2 & Q16B_Att7Party == 2 ~ 2,
Q16A_Att7Party == 1 & Q16B_Att7Party == 2 ~ 3,
Q16A_Att7Party == 2 & Q16B_Att7Party == 1 ~ 3
))
TESS_Data_New_9 <- TESS_Data_New_8
write_sav(TESS_Data_New_9,"TESS_Data_New_9.sav")
Next the data needs to be restructured from wide to long with Q9A_Att_1 thru Q16B_Att_8 converted to a single variable for each attribute for each voting task Att_1.1 thru Att_8.8 with a row for candidate A and a row for candidate B. This requires 64 transformations (8 attributes by 8 voting tasks). All the other variables will remain fixed. This step has to come first so that the next set of restructures will have the same vector length(8).
DO NOT RUN THIS BLOCK AS IT HAS ALREADY BEEN CONDUCTED AND IS ONLY FOR DOCUMENTATION PURPOSES
#cols_to_reshape <- c(
# "Q9A_Att1Religion", "Q9B_Att1Religion", "Q9A_Att2Gender", "Q9B_Att2Gender",
# "Q9A_Att3Race", "Q9B_Att3Race", "Q9A_Att4Education", "Q9B_Att4Education",
# "Q9A_Att5Age", "Q9B_Att5Age", "Q9A_Att6Experience", "Q9B_Att6Experience",
# "Q9A_Att7Party", "Q9B_Att7Party", "Q9A_Att8Policy", "Q9B_Att8Policy",
# "Q10A_Att1Religion", "Q10B_Att1Religion", "Q10A_Att2Gender", "Q10B_Att2Gender",
# "Q10A_Att3Race", "Q10B_Att3Race", "Q10A_Att4Education", "Q10B_Att4Education",
# "Q10A_Att5Age", "Q10B_Att5Age", "Q10A_Att6Experience", "Q10B_Att6Experience",
# "Q10A_Att7Party", "Q10B_Att7Party", "Q10A_Att8Policy", "Q10B_Att8Policy",
# "Q11A_Att1Religion", "Q11B_Att1Religion", "Q11A_Att2Gender", "Q11B_Att2Gender",
# "Q11A_Att3Race", "Q11B_Att3Race", "Q11A_Att4Education", "Q11B_Att4Education",
# "Q11A_Att5Age", "Q11B_Att5Age", "Q11A_Att6Experience", "Q11B_Att6Experience",
# "Q11A_Att7Party", "Q11B_Att7Party", "Q11A_Att8Policy", "Q11B_Att8Policy",
# "Q12A_Att1Religion", "Q12B_Att1Religion", "Q12A_Att2Gender", "Q12B_Att2Gender",
# "Q12A_Att3Race", "Q12B_Att3Race", "Q12A_Att4Education", "Q12B_Att4Education",
# "Q12A_Att5Age", "Q12B_Att5Age", "Q12A_Att6Experience", "Q12B_Att6Experience",
# "Q12A_Att7Party", "Q12B_Att7Party", "Q12A_Att8Policy", "Q12B_Att8Policy",
# "Q13A_Att1Religion", "Q13B_Att1Religion", "Q13A_Att2Gender", "Q13B_Att2Gender",
# "Q13A_Att3Race", "Q13B_Att3Race", "Q13A_Att4Education", "Q13B_Att4Education",
# "Q13A_Att5Age", "Q13B_Att5Age", "Q13A_Att6Experience", "Q13B_Att6Experience",
# "Q13A_Att7Party", "Q13B_Att7Party", "Q13A_Att8Policy", "Q13B_Att8Policy",
# "Q14A_Att1Religion", "Q14B_Att1Religion", "Q14A_Att2Gender", "Q14B_Att2Gender",
# "Q14A_Att3Race", "Q14B_Att3Race", "Q14A_Att4Education", "Q14B_Att4Education",
# "Q14A_Att5Age", "Q14B_Att5Age", "Q14A_Att6Experience", "Q14B_Att6Experience",
# "Q14A_Att7Party", "Q14B_Att7Party", "Q14A_Att8Policy", "Q14B_Att8Policy",
# "Q15A_Att1Religion", "Q15B_Att1Religion", "Q15A_Att2Gender", "Q15B_Att2Gender",
# "Q15A_Att3Race", "Q15B_Att3Race", "Q15A_Att4Education", "Q15B_Att4Education",
# "Q15A_Att5Age", "Q15B_Att5Age", "Q15A_Att6Experience", "Q15B_Att6Experience",
# "Q15A_Att7Party", "Q15B_Att7Party", "Q15A_Att8Policy", "Q15B_Att8Policy",
# "Q16A_Att1Religion", "Q16B_Att1Religion", "Q16A_Att2Gender", "Q16B_Att2Gender",
# "Q16A_Att3Race", "Q16B_Att3Race", "Q16A_Att4Education", "Q16B_Att4Education",
# "Q16A_Att5Age", "Q16B_Att5Age", "Q16A_Att6Experience", "Q16B_Att6Experience",
# "Q16A_Att7Party", "Q16B_Att7Party", "Q16A_Att8Policy", "Q16B_Att8Policy"
#)
# Melt the data to long format
# Create a long format of the data
#TESS_Data_Long_1 <- TESS_Data_New_9 %>%
# pivot_longer(
# cols = all_of(cols_to_reshape),
# names_to = c("Question", "Candidate", "Attribute"),
# names_pattern = "Q(\\d+)([AB])_Att(\\d+)",
# values_to = "Value"
#) %>%
#unite("Attribute", c("Attribute", "Question"), sep = "_")
# Create a Candidate column based on the reshaped data
#TESS_Data_Long_1 <- TESS_Data_Long_1 %>%
# mutate(Candidate = ifelse(Candidate == "A", 1, 2))
# Spread the data to get the final format
#TESS_Data_10 <- TESS_Data_Long_1 %>%
# pivot_wider(names_from = Attribute, values_from = Value)
# Add other fixed variables
#fixed_vars <- c("CaseId", "WEIGHT", "ConfidenceinGod", "Secularism1", "Secularism2", "Secularism3",
# "Secularism4", "Q9", "Q10", "Q11", "Q12", "Q13", "Q14", "Q15", "Q16",
# "MayorPresidentRandom_1", "AttributeOrder_1", "AttributeOrder_2",
# "AttributeOrder_3", "AttributeOrder_4", "AttributeOrder_5",
# "AttributeOrder_6", "AttributeOrder_7", "AttributeOrder_8",
# "PartyID7", "PartyID5", "IDEO", "RELIG", "RELIG_OE", "ATTEND",
# "STARTDT", "ENDDT", "Device", "GENDER", "AGE", "AGE4", "AGE7",
# "RACETHNICITY", "EDUC5", "MARITAL", "EMPLOY", "INCOME",
# "INCOME4", "INCOME9", "STATE", "REGION4", "REGION9", "METRO",
# "INTERNET", "HOUSING", "HOME_TYPE", "PHONESERVICE", "HHSIZE",
# "HH01", "HH25", "HH612", "HH1317", "HH18OV", "Secularism1flipped",
# "Secularism2flipped", "Secularism3flipped", "Secularism4flipped",
# "secularism", "partyid3cat", "relig2cat", "attend2cat",
# "DemsvReps", "secularism2cat", "race2cat", "religiosity")
#TESS_Data_11 <- TESS_Data_10 %>%
# select(all_of(fixed_vars)) %>%
#bind_cols(TESS_Data_10)
# View the transformed data
#head(TESS_Data_11)
This next block of code reshapes the data from wide to long such that each participant has a row for each of the 8 voting tasks. The attribute variables have also been restructured so that the profile for each attribute for each candidate corresponds to the correct voting task.
DO NOT RUN THIS BLOCK AS IT HAS ALREADY BEEN CONDUCTED AND IS ONLY FOR DOCUMENTATION PURPOSES
#cols_to_reshape <- c(
# "Q9...8", "Q10.", "Q11", "Q12", "Q13", "Q14", "Q15", "Q16",
# "Religion_Att.1", "Religion_Att.2", "Religion_Att.3", "Religion_Att.4",
# "Religion_Att.5", "Religion_Att.6", "Religion_Att.7", "Religion_Att.8",
# "Gender_Att.1", "Gender_Att.2", "Gender_Att.3", "Gender_Att.4",
# "Gender_Att.5", "Gender_Att.6", "Gender_Att.7", "Gender_Att.8",
# "Race_Att.1", "Race_Att.2", "Race_Att.3", "Race_Att.4",
# "Race_Att.5", "Race_Att.6", "Race_Att.7", "Race_Att.8",
# "Education_Att.1", "Education_Att.2", "Education_Att.3", "Education_Att.4",
# "Education_Att.5", "Education_Att.6", "Education_Att.7", "Education_Att.8",
# "Age_Att.1", "Age_Att.2", "Age_Att.3", "Age_Att.4",
# "Age_Att.5", "Age_Att.6", "Age_Att.7", "Age_Att.8",
# "Experience_Att.1", "Experience_Att.2", "Experience_Att.3", "Experience_Att.4",
# "Experience_Att.5", "Experience_Att.6", "Experience_Att.7", "Experience_Att.8",
# "Party_Att.1", "Party_Att.2", "Party_Att.3", "Party_Att.4",
# "Party_Att.5", "Party_Att.6", "Party_Att.7", "Party_Att.8",
# "Policy_Att.1", "Policy_Att.2", "Policy_Att.3", "Policy_Att.4",
# "Policy_Att.5", "Policy_Att.6", "Policy_Att.7", "Policy_Att.8",
# "Q1_Partisan_Comp", "Q2_Partisan_Comp", "Q3_Partisan_Comp", "Q4_Partisan_Comp",
# "Q5_Partisan_Comp", "Q6_Partisan_Comp", "Q7_Partisan_Comp", "Q8_Partisan_Comp"
#)
# Reshape the data to long format
#TESS_Data_12 <- TESS_Data_11 %>%
# pivot_longer(
# cols = all_of(cols_to_reshape),
# names_to = c(".value", "Task"),
# names_pattern = "(.*)_Att\\.(\\d+)"
# )
Finally, a new variable has been created that distinguishes between mayoral and presidential office contests and the attribute variables are structured as factors.
DO NOT RUN THIS BLOCK AS IT HAS ALREADY BEEN CONDUCTED AND IS ONLY FOR DOCUMENTATION PURPOSES
#TESS_Data_12 <- TESS_Data_12 %>%
# mutate(Office = ifelse(Task >= 1 & Task <= 4, 1, 2))
#TESS_Data_Final$Office<-factor(TESS_Data_Final$Office,
# levels = c(1,2),
# labels = c("Mayor", "President"))
#TESS_Data_Final <-TESS_Data_12
#TESS_Data_Final$Religion.Att <-factor(TESS_Data_Final$Religion.Att,
# levels = c(1:5),
# lables = c("Athiest", "Is not sure there is a God",
# "Does not currently identify with a religion",
# "Attends religious services weekly", "Christian"))
#TESS_Data_Final$Gender.Att <-factor(TESS_Data_Final$Gender.Att,
# levels = c(1,2),
# lables = c("Female", "Male"))
#TESS_Data_Final$Race.Att <-factor(TESS_Data_Final$Race.Att,
# levels = c(1,2,3,4),
# lables = c("White", "Black", "Hispanic","Asian"))
#TESS_Data_Final$Education.Att <-factor(TESS_Data_Final$Education.Att,
# levels = c(1,2,3,4),
# lables = c("High School", "Some College", "College Grad","Grad Degree"))
#TESS_Data_Final$Age.Att <-factor(TESS_Data_Final$Age.Att,
# levels = c(1,2,3,4),
# lables = c("35", "47", "59","71"))
#TESS_Data_Final$Experience.Att <-factor(TESS_Data_Final$Experience.Att,
# levels = c(1,2,3,4),
# lables = c("No Experience", "4 Years", "8 Years","12 Years"))
#TESS_Data_Final$Party.Att <-factor(TESS_Data_Final$Party.Att,
# levels = c(1,2),
# lables = c("Democrat", "Republican"))
#TESS_Data_Final$Policy.Att <-factor(TESS_Data_Final$Policy.Att,
# levels = c(1,2,3,4,5),
# lables = c("Foreign", "Economic", "Health Care","Education", "Environmental"))
#TESS_Data_Final$Partisanship <-factor(TESS_Data_Final$Partisanship,
# levels = c(1,2,3),
# lables = c("Democrat Primary", "Republican Primary", "General"))
#TESS_Data_Final$Vote.Choice <-factor(TESS_Data_Final$Vote.Choice,
# levels = c(1,2),
# lables = c("Candidate A", "Candidate B"))
#write.csv(TESS_Data_Final, "TESS_Data_Final.csv")
#write_sav(TESS_Data_Final, "TESS_Data_Final.sav")
The above blocks of code are for data preparation and do not need to be run, only preserved for documentation.
The following code is what needs to be run to conduct the analyses.
There are warnings, but they are only letting you know that the variables are being treated as factors rather than continuous variables, which is appropriate for this analysis
There are two analyses in this block. The first runs the amce analysis without weights and the second runs them with weights.
##If Needed
install.packages("cjoint")
## Warning: package 'cjoint' is in use and will not be installed
library("cjoint")
##Load Data
TESS_Data_Final<-read_sav("TESS_Data_Final.sav")
test.results.1 <- amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
Education.Att + Age.Att + Experience.Att + Party.Att +
Policy.Att + Office + Partisan_Comp, data=TESS_Data_Final,
cluster=TRUE, respondent.id="CaseId")
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: AgeAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: EducationAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: ExperienceAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: GenderAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: Office changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: PartisanComp changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: PartyAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: PolicyAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: RaceAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: ReligionAtt changed to factor
print(test.results.1)
## $estimates
## $estimates$AgeAtt
## AgeAtt2 AgeAtt3 AgeAtt4
## AMCE 0.011483935 0.012349437 0.008404763
## Std. Error 0.009786771 0.009519675 0.009870429
##
## $estimates$EducationAtt
## EducationAtt2 EducationAtt3 EducationAtt4
## AMCE 0.023238350 0.013463665 0.002269438
## Std. Error 0.009964342 0.009940838 0.010370417
##
## $estimates$ExperienceAtt
## ExperienceAtt2 ExperienceAtt3 ExperienceAtt4
## AMCE -0.02145437 -0.024215550 -0.020722810
## Std. Error 0.01016637 0.009894363 0.009887003
##
## $estimates$GenderAtt
## GenderAtt2
## AMCE -0.002418926
## Std. Error 0.007152604
##
## $estimates$Office
## Office2
## AMCE 0.002058719
## Std. Error 0.009426408
##
## $estimates$PartisanComp
## PartisanComp2 PartisanComp3
## AMCE 0.02737276 0.01467466
## Std. Error 0.01379523 0.01190521
##
## $estimates$PartyAtt
## PartyAtt2
## AMCE 0.001493301
## Std. Error 0.002084489
##
## $estimates$PolicyAtt
## PolicyAtt2 PolicyAtt3 PolicyAtt4 PolicyAtt5
## AMCE 0.02253697 0.02734758 0.02235258 0.001279776
## Std. Error 0.01163646 0.01140648 0.01170632 0.011595548
##
## $estimates$RaceAtt
## RaceAtt2 RaceAtt3 RaceAtt4
## AMCE 0.001789570 -0.015509603 -0.005801932
## Std. Error 0.009886366 0.009561242 0.009659377
##
## $estimates$ReligionAtt
## ReligionAtt2 ReligionAtt3 ReligionAtt4 ReligionAtt5
## AMCE 0.005218739 0.03806461 0.001444202 0.001889924
## Std. Error 0.011605295 0.01160858 0.011080576 0.012034521
##
##
## $attributes
## $attributes$AgeAtt
## [1] "1" "2" "3" "4"
##
## $attributes$EducationAtt
## [1] "1" "2" "3" "4"
##
## $attributes$ExperienceAtt
## [1] "1" "2" "3" "4"
##
## $attributes$GenderAtt
## [1] "1" "2"
##
## $attributes$Office
## [1] "1" "2"
##
## $attributes$PartisanComp
## [1] "1" "2" "3"
##
## $attributes$PartyAtt
## [1] "1" "2"
##
## $attributes$PolicyAtt
## [1] "1" "2" "3" "4" "5"
##
## $attributes$RaceAtt
## [1] "1" "2" "3" "4"
##
## $attributes$ReligionAtt
## [1] "1" "2" "3" "4" "5"
##
##
## $vcov.prof
## (Intercept) AgeAtt2 AgeAtt3 AgeAtt4
## (Intercept) 3.707765e-04 -4.743541e-05 -3.877119e-05 -4.018044e-05
## AgeAtt2 -4.743541e-05 9.578090e-05 4.457650e-05 4.980505e-05
## AgeAtt3 -3.877119e-05 4.457650e-05 9.062421e-05 4.219408e-05
## AgeAtt4 -4.018044e-05 4.980505e-05 4.219408e-05 9.742537e-05
## EducationAtt2 -5.195165e-05 -2.788913e-08 4.250892e-07 -8.048911e-07
## EducationAtt3 -5.012397e-05 4.268021e-06 -3.750703e-06 1.335700e-06
## EducationAtt4 -5.653127e-05 7.253721e-06 1.027422e-05 6.809694e-06
## ExperienceAtt2 -4.084437e-05 1.127359e-05 1.282289e-06 3.522102e-06
## ExperienceAtt3 -3.756929e-05 -2.626182e-06 -7.681846e-07 1.933649e-06
## ExperienceAtt4 -4.014940e-05 3.148020e-06 -2.344338e-06 9.812792e-07
## GenderAtt2 -3.265823e-05 5.529741e-07 1.749142e-06 9.933876e-07
## Office2 -4.219184e-05 -2.101491e-06 -2.898341e-07 -2.317611e-06
## PartisanComp2 -8.097525e-05 -1.484414e-05 -7.199519e-06 -7.837793e-06
## PartisanComp3 -8.418352e-05 -1.427474e-05 -5.249591e-06 -1.030722e-05
## PartyAtt2 -6.333324e-06 1.294163e-06 -1.337970e-07 8.524269e-08
## PolicyAtt2 -6.461259e-05 -5.481287e-06 -6.973892e-06 -4.343323e-06
## PolicyAtt3 -6.812392e-05 -5.086150e-06 -6.022286e-07 -5.899240e-06
## PolicyAtt4 -6.734387e-05 1.373513e-06 -1.370953e-06 2.815989e-06
## PolicyAtt5 -6.092397e-05 -4.537663e-07 -7.071488e-06 -5.111146e-06
## RaceAtt2 -5.878568e-05 2.338682e-06 -1.309342e-06 3.019339e-06
## RaceAtt3 -4.030934e-05 1.159254e-06 -1.380589e-06 1.871826e-06
## RaceAtt4 -4.867568e-05 7.693122e-06 5.034032e-06 2.753130e-06
## ReligionAtt2 -7.389046e-05 -1.491899e-06 -1.002488e-06 -4.259126e-06
## ReligionAtt3 -6.475721e-05 6.221898e-06 -4.761005e-06 -1.060389e-06
## ReligionAtt4 -6.183420e-05 7.348220e-07 3.128971e-07 -1.148893e-06
## ReligionAtt5 -6.837700e-05 4.075127e-06 -4.877343e-06 1.605275e-06
## EducationAtt2 EducationAtt3 EducationAtt4 ExperienceAtt2
## (Intercept) -5.195165e-05 -5.012397e-05 -5.653127e-05 -4.084437e-05
## AgeAtt2 -2.788913e-08 4.268021e-06 7.253721e-06 1.127359e-05
## AgeAtt3 4.250892e-07 -3.750703e-06 1.027422e-05 1.282289e-06
## AgeAtt4 -8.048911e-07 1.335700e-06 6.809694e-06 3.522102e-06
## EducationAtt2 9.928811e-05 4.669728e-05 5.173468e-05 -1.374837e-06
## EducationAtt3 4.669728e-05 9.882026e-05 4.568829e-05 -3.631975e-06
## EducationAtt4 5.173468e-05 4.568829e-05 1.075456e-04 -7.395642e-06
## ExperienceAtt2 -1.374837e-06 -3.631975e-06 -7.395642e-06 1.033551e-04
## ExperienceAtt3 4.288852e-07 7.718052e-07 -1.124919e-06 4.649326e-05
## ExperienceAtt4 -4.660328e-06 -3.458432e-06 -6.389543e-06 4.943543e-05
## GenderAtt2 4.061922e-06 -2.766306e-06 5.580697e-06 -1.232624e-06
## Office2 2.082316e-06 2.931661e-07 8.072415e-09 -3.279595e-06
## PartisanComp2 -4.021835e-06 4.106478e-06 -1.543871e-06 -8.178936e-06
## PartisanComp3 -5.750928e-07 1.427420e-06 -2.743836e-06 -2.448422e-06
## PartyAtt2 2.477920e-06 -3.442723e-06 2.909425e-06 3.325066e-07
## PolicyAtt2 6.360536e-07 -8.270594e-07 -2.329123e-07 -6.607443e-06
## PolicyAtt3 -3.261683e-06 -7.961883e-07 -7.135445e-06 -2.641102e-06
## PolicyAtt4 7.076697e-07 1.892870e-06 2.840186e-06 -2.689240e-06
## PolicyAtt5 -1.060801e-06 8.997503e-07 -5.801142e-06 -7.203147e-06
## RaceAtt2 -2.537568e-06 -5.521770e-06 -3.875417e-06 5.321715e-06
## RaceAtt3 -7.269944e-06 -7.019207e-06 -3.018782e-06 6.474043e-06
## RaceAtt4 1.443337e-06 -3.749175e-06 1.422558e-06 1.036015e-05
## ReligionAtt2 8.578579e-06 7.646400e-06 2.761592e-06 -6.429881e-06
## ReligionAtt3 7.267630e-06 8.133102e-06 4.954066e-07 -1.008353e-05
## ReligionAtt4 5.943546e-06 9.270444e-06 5.563707e-06 -8.565300e-06
## ReligionAtt5 -3.205855e-06 7.185033e-06 1.397191e-06 -7.084721e-06
## ExperienceAtt3 ExperienceAtt4 GenderAtt2 Office2
## (Intercept) -3.756929e-05 -4.014940e-05 -3.265823e-05 -4.219184e-05
## AgeAtt2 -2.626182e-06 3.148020e-06 5.529741e-07 -2.101491e-06
## AgeAtt3 -7.681846e-07 -2.344338e-06 1.749142e-06 -2.898341e-07
## AgeAtt4 1.933649e-06 9.812792e-07 9.933876e-07 -2.317611e-06
## EducationAtt2 4.288852e-07 -4.660328e-06 4.061922e-06 2.082316e-06
## EducationAtt3 7.718052e-07 -3.458432e-06 -2.766306e-06 2.931661e-07
## EducationAtt4 -1.124919e-06 -6.389543e-06 5.580697e-06 8.072415e-09
## ExperienceAtt2 4.649326e-05 4.943543e-05 -1.232624e-06 -3.279595e-06
## ExperienceAtt3 9.789842e-05 4.386442e-05 -3.263688e-06 -2.207926e-06
## ExperienceAtt4 4.386442e-05 9.775283e-05 -1.803226e-06 1.020057e-08
## GenderAtt2 -3.263688e-06 -1.803226e-06 5.115974e-05 -1.818365e-06
## Office2 -2.207926e-06 1.020057e-08 -1.818365e-06 8.885717e-05
## PartisanComp2 -3.267407e-06 -4.613330e-06 5.144970e-06 6.695282e-06
## PartisanComp3 -2.936081e-06 -3.044339e-06 3.231766e-06 1.682921e-06
## PartyAtt2 5.264362e-06 3.399470e-06 -3.863124e-06 -1.478412e-07
## PolicyAtt2 -6.141886e-06 -4.583192e-06 3.031944e-06 -4.779156e-07
## PolicyAtt3 -1.080247e-05 6.733392e-06 6.852253e-06 -4.010787e-06
## PolicyAtt4 -8.409545e-06 -5.949700e-06 5.359681e-06 -6.124766e-06
## PolicyAtt5 -9.323664e-06 -4.710048e-06 6.240075e-06 -4.830615e-06
## RaceAtt2 3.275338e-06 7.420700e-06 1.289549e-05 -1.123223e-06
## RaceAtt3 3.359644e-06 4.700285e-06 1.372126e-06 -2.003912e-06
## RaceAtt4 1.052859e-06 -2.796032e-07 4.047863e-06 3.749706e-07
## ReligionAtt2 1.206384e-06 7.256178e-07 9.712997e-08 1.643338e-06
## ReligionAtt3 1.495056e-06 1.880593e-06 3.549799e-06 5.149037e-06
## ReligionAtt4 -1.258481e-05 -5.497819e-06 -4.005801e-06 4.695265e-06
## ReligionAtt5 -3.560949e-07 -5.860476e-06 -2.555784e-06 -1.301487e-06
## PartisanComp2 PartisanComp3 PartyAtt2 PolicyAtt2
## (Intercept) -8.097525e-05 -8.418352e-05 -6.333324e-06 -6.461259e-05
## AgeAtt2 -1.484414e-05 -1.427474e-05 1.294163e-06 -5.481287e-06
## AgeAtt3 -7.199519e-06 -5.249591e-06 -1.337970e-07 -6.973892e-06
## AgeAtt4 -7.837793e-06 -1.030722e-05 8.524269e-08 -4.343323e-06
## EducationAtt2 -4.021835e-06 -5.750928e-07 2.477920e-06 6.360536e-07
## EducationAtt3 4.106478e-06 1.427420e-06 -3.442723e-06 -8.270594e-07
## EducationAtt4 -1.543871e-06 -2.743836e-06 2.909425e-06 -2.329123e-07
## ExperienceAtt2 -8.178936e-06 -2.448422e-06 3.325066e-07 -6.607443e-06
## ExperienceAtt3 -3.267407e-06 -2.936081e-06 5.264362e-06 -6.141886e-06
## ExperienceAtt4 -4.613330e-06 -3.044339e-06 3.399470e-06 -4.583192e-06
## GenderAtt2 5.144970e-06 3.231766e-06 -3.863124e-06 3.031944e-06
## Office2 6.695282e-06 1.682921e-06 -1.478412e-07 -4.779156e-07
## PartisanComp2 1.903084e-04 8.759466e-05 -3.732038e-06 -4.539819e-06
## PartisanComp3 8.759466e-05 1.417341e-04 -1.651624e-06 2.650231e-06
## PartyAtt2 -3.732038e-06 -1.651624e-06 4.345093e-06 1.111662e-05
## PolicyAtt2 -4.539819e-06 2.650231e-06 1.111662e-05 1.354072e-04
## PolicyAtt3 -3.981522e-07 1.055070e-05 1.015143e-05 6.854692e-05
## PolicyAtt4 -1.264606e-05 1.371544e-06 1.155798e-05 7.643076e-05
## PolicyAtt5 -1.491794e-06 5.701284e-06 1.101937e-05 7.657531e-05
## RaceAtt2 1.132832e-05 5.216420e-06 -4.866798e-06 2.096688e-06
## RaceAtt3 5.594367e-06 -3.199796e-07 -4.652338e-06 -8.346741e-06
## RaceAtt4 5.973286e-06 -2.004444e-06 -3.088334e-06 -7.780563e-06
## ReligionAtt2 9.081482e-06 6.986817e-06 -7.121838e-06 -3.858314e-06
## ReligionAtt3 -8.038170e-06 -3.531262e-06 -4.149505e-07 -4.597900e-06
## ReligionAtt4 -4.575660e-06 -6.134034e-06 3.745343e-06 2.251499e-06
## ReligionAtt5 -4.216739e-06 -2.370109e-06 -1.040588e-06 -4.325255e-06
## PolicyAtt3 PolicyAtt4 PolicyAtt5 RaceAtt2
## (Intercept) -6.812392e-05 -6.734387e-05 -6.092397e-05 -5.878568e-05
## AgeAtt2 -5.086150e-06 1.373513e-06 -4.537663e-07 2.338682e-06
## AgeAtt3 -6.022286e-07 -1.370953e-06 -7.071488e-06 -1.309342e-06
## AgeAtt4 -5.899240e-06 2.815989e-06 -5.111146e-06 3.019339e-06
## EducationAtt2 -3.261683e-06 7.076697e-07 -1.060801e-06 -2.537568e-06
## EducationAtt3 -7.961883e-07 1.892870e-06 8.997503e-07 -5.521770e-06
## EducationAtt4 -7.135445e-06 2.840186e-06 -5.801142e-06 -3.875417e-06
## ExperienceAtt2 -2.641102e-06 -2.689240e-06 -7.203147e-06 5.321715e-06
## ExperienceAtt3 -1.080247e-05 -8.409545e-06 -9.323664e-06 3.275338e-06
## ExperienceAtt4 6.733392e-06 -5.949700e-06 -4.710048e-06 7.420700e-06
## GenderAtt2 6.852253e-06 5.359681e-06 6.240075e-06 1.289549e-05
## Office2 -4.010787e-06 -6.124766e-06 -4.830615e-06 -1.123223e-06
## PartisanComp2 -3.981522e-07 -1.264606e-05 -1.491794e-06 1.132832e-05
## PartisanComp3 1.055070e-05 1.371544e-06 5.701284e-06 5.216420e-06
## PartyAtt2 1.015143e-05 1.155798e-05 1.101937e-05 -4.866798e-06
## PolicyAtt2 6.854692e-05 7.643076e-05 7.657531e-05 2.096688e-06
## PolicyAtt3 1.301079e-04 6.840455e-05 7.282996e-05 3.210554e-06
## PolicyAtt4 6.840455e-05 1.370380e-04 7.781416e-05 6.480018e-07
## PolicyAtt5 7.282996e-05 7.781416e-05 1.344567e-04 -5.203444e-07
## RaceAtt2 3.210554e-06 6.480018e-07 -5.203444e-07 9.774023e-05
## RaceAtt3 -3.430354e-06 -1.231571e-05 -7.962509e-06 4.656178e-05
## RaceAtt4 -1.991686e-06 -8.005066e-06 -1.083589e-05 4.749523e-05
## ReligionAtt2 -4.472008e-06 -5.299582e-06 -3.346056e-06 -2.074818e-06
## ReligionAtt3 -1.164423e-05 -2.725005e-06 -1.353226e-05 -4.887794e-06
## ReligionAtt4 -6.019556e-06 5.690993e-06 -2.561708e-06 -3.159029e-06
## ReligionAtt5 -6.461150e-06 1.240113e-06 -6.428116e-06 -1.354770e-06
## RaceAtt3 RaceAtt4 ReligionAtt2 ReligionAtt3
## (Intercept) -4.030934e-05 -4.867568e-05 -7.389046e-05 -6.475721e-05
## AgeAtt2 1.159254e-06 7.693122e-06 -1.491899e-06 6.221898e-06
## AgeAtt3 -1.380589e-06 5.034032e-06 -1.002488e-06 -4.761005e-06
## AgeAtt4 1.871826e-06 2.753130e-06 -4.259126e-06 -1.060389e-06
## EducationAtt2 -7.269944e-06 1.443337e-06 8.578579e-06 7.267630e-06
## EducationAtt3 -7.019207e-06 -3.749175e-06 7.646400e-06 8.133102e-06
## EducationAtt4 -3.018782e-06 1.422558e-06 2.761592e-06 4.954066e-07
## ExperienceAtt2 6.474043e-06 1.036015e-05 -6.429881e-06 -1.008353e-05
## ExperienceAtt3 3.359644e-06 1.052859e-06 1.206384e-06 1.495056e-06
## ExperienceAtt4 4.700285e-06 -2.796032e-07 7.256178e-07 1.880593e-06
## GenderAtt2 1.372126e-06 4.047863e-06 9.712997e-08 3.549799e-06
## Office2 -2.003912e-06 3.749706e-07 1.643338e-06 5.149037e-06
## PartisanComp2 5.594367e-06 5.973286e-06 9.081482e-06 -8.038170e-06
## PartisanComp3 -3.199796e-07 -2.004444e-06 6.986817e-06 -3.531262e-06
## PartyAtt2 -4.652338e-06 -3.088334e-06 -7.121838e-06 -4.149505e-07
## PolicyAtt2 -8.346741e-06 -7.780563e-06 -3.858314e-06 -4.597900e-06
## PolicyAtt3 -3.430354e-06 -1.991686e-06 -4.472008e-06 -1.164423e-05
## PolicyAtt4 -1.231571e-05 -8.005066e-06 -5.299582e-06 -2.725005e-06
## PolicyAtt5 -7.962509e-06 -1.083589e-05 -3.346056e-06 -1.353226e-05
## RaceAtt2 4.656178e-05 4.749523e-05 -2.074818e-06 -4.887794e-06
## RaceAtt3 9.141734e-05 4.125172e-05 1.054949e-05 3.420863e-06
## RaceAtt4 4.125172e-05 9.330356e-05 6.902690e-06 -2.792478e-06
## ReligionAtt2 1.054949e-05 6.902690e-06 1.346829e-04 6.983669e-05
## ReligionAtt3 3.420863e-06 -2.792478e-06 6.983669e-05 1.347592e-04
## ReligionAtt4 1.166704e-06 1.013409e-07 6.240425e-05 6.473837e-05
## ReligionAtt5 1.830632e-06 6.984239e-07 7.539483e-05 7.909695e-05
## ReligionAtt4 ReligionAtt5
## (Intercept) -6.183420e-05 -6.837700e-05
## AgeAtt2 7.348220e-07 4.075127e-06
## AgeAtt3 3.128971e-07 -4.877343e-06
## AgeAtt4 -1.148893e-06 1.605275e-06
## EducationAtt2 5.943546e-06 -3.205855e-06
## EducationAtt3 9.270444e-06 7.185033e-06
## EducationAtt4 5.563707e-06 1.397191e-06
## ExperienceAtt2 -8.565300e-06 -7.084721e-06
## ExperienceAtt3 -1.258481e-05 -3.560949e-07
## ExperienceAtt4 -5.497819e-06 -5.860476e-06
## GenderAtt2 -4.005801e-06 -2.555784e-06
## Office2 4.695265e-06 -1.301487e-06
## PartisanComp2 -4.575660e-06 -4.216739e-06
## PartisanComp3 -6.134034e-06 -2.370109e-06
## PartyAtt2 3.745343e-06 -1.040588e-06
## PolicyAtt2 2.251499e-06 -4.325255e-06
## PolicyAtt3 -6.019556e-06 -6.461150e-06
## PolicyAtt4 5.690993e-06 1.240113e-06
## PolicyAtt5 -2.561708e-06 -6.428116e-06
## RaceAtt2 -3.159029e-06 -1.354770e-06
## RaceAtt3 1.166704e-06 1.830632e-06
## RaceAtt4 1.013409e-07 6.984239e-07
## ReligionAtt2 6.240425e-05 7.539483e-05
## ReligionAtt3 6.473837e-05 7.909695e-05
## ReligionAtt4 1.227792e-04 7.402673e-05
## ReligionAtt5 7.402673e-05 1.448297e-04
##
## $samplesize_prof
## [1] 20384
##
## $formula
## VotingTask ~ AgeAtt + EducationAtt + ExperienceAtt + GenderAtt +
## Office + PartisanComp + PartyAtt + PolicyAtt + RaceAtt +
## ReligionAtt
## <environment: 0x0000023eb843c128>
##
## $baselines
## $baselines$AgeAtt
## [1] "1"
##
## $baselines$EducationAtt
## [1] "1"
##
## $baselines$ExperienceAtt
## [1] "1"
##
## $baselines$GenderAtt
## [1] "1"
##
## $baselines$Office
## [1] "1"
##
## $baselines$PartisanComp
## [1] "1"
##
## $baselines$PartyAtt
## [1] "1"
##
## $baselines$PolicyAtt
## [1] "1"
##
## $baselines$RaceAtt
## [1] "1"
##
## $baselines$ReligionAtt
## [1] "1"
##
##
## $continuous
## list()
##
## $numrespondents
## [1] 1274
##
## $user.names
## $user.names$VotingTask
## [1] "Voting.Task"
##
## $user.names$ReligionAtt
## [1] "Religion.Att"
##
## $user.names$GenderAtt
## [1] "Gender.Att"
##
## $user.names$RaceAtt
## [1] "Race.Att"
##
## $user.names$EducationAtt
## [1] "Education.Att"
##
## $user.names$AgeAtt
## [1] "Age.Att"
##
## $user.names$ExperienceAtt
## [1] "Experience.Att"
##
## $user.names$PartyAtt
## [1] "Party.Att"
##
## $user.names$PolicyAtt
## [1] "Policy.Att"
##
## $user.names$Office
## [1] "Office"
##
## $user.names$PartisanComp
## [1] "Partisan_Comp"
##
##
## $user.levels
## list()
##
## $data
## # A tibble: 20,384 × 75
## CaseId WEIGHT ConfidenceinGod Secularism1 Secularism2 Secularism3 Secularism4
## <dbl> <dbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>
## 1 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 2 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 3 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 4 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 5 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 6 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 7 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 8 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 9 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 10 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## # ℹ 20,374 more rows
## # ℹ 68 more variables: MayorPresidentRandom1 <dbl+lbl>,
## # AttributeOrder1 <dbl+lbl>, AttributeOrder2 <dbl+lbl>,
## # AttributeOrder3 <dbl+lbl>, AttributeOrder4 <dbl+lbl>,
## # AttributeOrder5 <dbl+lbl>, AttributeOrder6 <dbl+lbl>,
## # AttributeOrder7 <dbl+lbl>, AttributeOrder8 <dbl+lbl>, PartyID7 <dbl+lbl>,
## # PartyID5 <dbl+lbl>, IDEO <dbl+lbl>, RELIG <dbl+lbl>, RELIGOE <chr>, …
##
## attr(,"class")
## [1] "amce"
str(TESS_Data_Final$WEIGHT)
## num [1:20384] 0.234 0.234 0.234 0.234 0.234 ...
## - attr(*, "label")= chr "Final weights - 18+ general population (N=1,274)"
## - attr(*, "format.spss")= chr "F17.15"
## - attr(*, "display_width")= int 12
test.results.2 <- amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
Education.Att + Age.Att + Experience.Att + Party.Att +
Policy.Att + Office + Partisan_Comp, data=TESS_Data_Final,
cluster=TRUE, weights = "WEIGHT", respondent.id="CaseId",
design = "uniform")
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: AgeAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: EducationAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: ExperienceAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: GenderAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: Office changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: PartisanComp changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: PartyAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: PolicyAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: RaceAtt changed to factor
## Warning in amce(Voting.Task ~ Religion.Att + Gender.Att + Race.Att +
## Education.Att + : Warning: ReligionAtt changed to factor
print(test.results.2)
## $estimates
## $estimates$AgeAtt
## AgeAtt2 AgeAtt3 AgeAtt4
## AMCE 0.007090786 0.004454963 -0.007869941
## Std. Error 0.012782228 0.012466207 0.013334719
##
## $estimates$EducationAtt
## EducationAtt2 EducationAtt3 EducationAtt4
## AMCE 0.02862141 0.02084978 -0.006898616
## Std. Error 0.01403189 0.01274581 0.014619545
##
## $estimates$ExperienceAtt
## ExperienceAtt2 ExperienceAtt3 ExperienceAtt4
## AMCE -0.01802921 -0.02208362 -0.01804155
## Std. Error 0.01323681 0.01263836 0.01374725
##
## $estimates$GenderAtt
## GenderAtt2
## AMCE -0.004761275
## Std. Error 0.009610831
##
## $estimates$Office
## Office2
## AMCE -0.001296915
## Std. Error 0.013060812
##
## $estimates$PartisanComp
## PartisanComp2 PartisanComp3
## AMCE 0.03083361 0.03094745
## Std. Error 0.02042755 0.01599552
##
## $estimates$PartyAtt
## PartyAtt2
## AMCE 0.004399420
## Std. Error 0.002859735
##
## $estimates$PolicyAtt
## PolicyAtt2 PolicyAtt3 PolicyAtt4 PolicyAtt5
## AMCE 0.04704615 0.03130175 0.03609877 0.02186687
## Std. Error 0.01693091 0.01462221 0.01579659 0.01593921
##
## $estimates$RaceAtt
## RaceAtt2 RaceAtt3 RaceAtt4
## AMCE 0.002438843 -0.02407743 -0.006779561
## Std. Error 0.013963229 0.01237012 0.012686129
##
## $estimates$ReligionAtt
## ReligionAtt2 ReligionAtt3 ReligionAtt4 ReligionAtt5
## AMCE -0.00540364 0.03137230 0.001632693 -0.00233990
## Std. Error 0.01494270 0.01538998 0.014607906 0.01582129
##
##
## $attributes
## $attributes$AgeAtt
## [1] "1" "2" "3" "4"
##
## $attributes$EducationAtt
## [1] "1" "2" "3" "4"
##
## $attributes$ExperienceAtt
## [1] "1" "2" "3" "4"
##
## $attributes$GenderAtt
## [1] "1" "2"
##
## $attributes$Office
## [1] "1" "2"
##
## $attributes$PartisanComp
## [1] "1" "2" "3"
##
## $attributes$PartyAtt
## [1] "1" "2"
##
## $attributes$PolicyAtt
## [1] "1" "2" "3" "4" "5"
##
## $attributes$RaceAtt
## [1] "1" "2" "3" "4"
##
## $attributes$ReligionAtt
## [1] "1" "2" "3" "4" "5"
##
##
## $vcov.prof
## (Intercept) AgeAtt2 AgeAtt3 AgeAtt4
## (Intercept) 7.249931e-04 -6.019933e-05 -5.464553e-05 -9.114717e-05
## AgeAtt2 -6.019933e-05 1.633853e-04 7.888305e-05 8.346367e-05
## AgeAtt3 -5.464553e-05 7.888305e-05 1.554063e-04 5.440921e-05
## AgeAtt4 -9.114717e-05 8.346367e-05 5.440921e-05 1.778147e-04
## EducationAtt2 -1.383602e-04 6.167234e-06 2.799096e-06 7.654127e-07
## EducationAtt3 -1.043540e-04 7.094160e-06 -5.170507e-06 1.336399e-05
## EducationAtt4 -1.252350e-04 9.321271e-06 3.281588e-05 1.085051e-05
## ExperienceAtt2 -5.049833e-05 2.166648e-05 1.178529e-05 2.223611e-05
## ExperienceAtt3 -7.104595e-05 2.328880e-06 5.107422e-06 2.009753e-05
## ExperienceAtt4 -9.828209e-05 1.856820e-05 2.403977e-07 2.765290e-05
## GenderAtt2 -5.946512e-05 -1.070143e-05 4.218775e-06 -2.528724e-06
## Office2 -8.726023e-05 -1.095176e-05 -9.338024e-06 -9.866019e-07
## PartisanComp2 -1.965845e-04 -4.880185e-05 -1.493788e-05 -1.805414e-05
## PartisanComp3 -1.841657e-04 -2.457938e-05 -1.277419e-05 -1.000023e-05
## PartyAtt2 -1.182916e-05 6.051766e-06 4.220510e-07 2.544052e-06
## PolicyAtt2 -1.373997e-04 -9.138300e-06 -2.563808e-05 2.807901e-06
## PolicyAtt3 -1.258107e-04 -1.185307e-05 -1.609548e-05 -3.730939e-06
## PolicyAtt4 -1.140297e-04 -5.970824e-09 -1.549730e-05 2.208888e-06
## PolicyAtt5 -1.220610e-04 2.111577e-05 -1.562001e-06 2.057498e-06
## RaceAtt2 -1.090851e-04 -1.430490e-05 -6.556998e-06 1.247528e-05
## RaceAtt3 -5.934394e-05 -1.673862e-05 -1.546613e-05 7.064730e-08
## RaceAtt4 -7.309419e-05 1.298564e-06 2.193921e-06 -8.382058e-06
## ReligionAtt2 -1.466681e-04 -8.452206e-06 -7.865566e-06 -1.202944e-06
## ReligionAtt3 -1.038623e-04 7.150608e-06 -1.869415e-05 -7.090705e-06
## ReligionAtt4 -1.098697e-04 -4.824047e-06 -1.534659e-05 4.919749e-06
## ReligionAtt5 -9.412861e-05 -1.228641e-05 -1.669221e-05 -7.647932e-06
## EducationAtt2 EducationAtt3 EducationAtt4 ExperienceAtt2
## (Intercept) -1.383602e-04 -1.043540e-04 -1.252350e-04 -5.049833e-05
## AgeAtt2 6.167234e-06 7.094160e-06 9.321271e-06 2.166648e-05
## AgeAtt3 2.799096e-06 -5.170507e-06 3.281588e-05 1.178529e-05
## AgeAtt4 7.654127e-07 1.336399e-05 1.085051e-05 2.223611e-05
## EducationAtt2 1.968939e-04 8.983802e-05 8.696003e-05 -2.032523e-05
## EducationAtt3 8.983802e-05 1.624556e-04 6.550137e-05 -1.482061e-07
## EducationAtt4 8.696003e-05 6.550137e-05 2.137311e-04 -2.434460e-06
## ExperienceAtt2 -2.032523e-05 -1.482061e-07 -2.434460e-06 1.752130e-04
## ExperienceAtt3 -1.241574e-06 -4.706344e-06 4.978223e-06 7.127116e-05
## ExperienceAtt4 6.932645e-07 7.754210e-06 4.910344e-06 8.531735e-05
## GenderAtt2 1.584364e-05 -5.985941e-06 1.370989e-05 -3.760508e-06
## Office2 7.415814e-06 -6.652616e-06 -7.403290e-06 -5.944160e-07
## PartisanComp2 9.431674e-06 2.614269e-05 3.249743e-05 -7.139032e-06
## PartisanComp3 1.257400e-05 2.046042e-05 9.794724e-06 -1.137810e-05
## PartyAtt2 8.235258e-06 -2.884668e-06 5.563758e-06 -4.661624e-06
## PolicyAtt2 1.340193e-05 -6.083852e-06 -3.318393e-05 -1.604718e-05
## PolicyAtt3 1.110484e-05 2.244232e-05 -1.772621e-05 -1.597021e-05
## PolicyAtt4 2.432073e-06 -8.879163e-06 -2.512129e-05 -2.057678e-05
## PolicyAtt5 1.539857e-05 -1.018016e-05 -2.238930e-05 -2.155722e-05
## RaceAtt2 -1.383510e-05 -1.651655e-05 -2.806434e-05 -6.311373e-06
## RaceAtt3 -3.500194e-05 -1.657787e-05 -7.370590e-06 9.618816e-06
## RaceAtt4 -7.370871e-06 -6.268719e-06 2.736738e-07 3.602450e-06
## ReligionAtt2 3.442409e-05 1.309746e-05 2.564343e-05 -4.923990e-06
## ReligionAtt3 1.622688e-05 8.882222e-06 1.432672e-05 -2.937522e-05
## ReligionAtt4 2.162740e-05 1.721603e-05 1.202488e-05 -2.615903e-05
## ReligionAtt5 -8.365031e-06 -9.862392e-07 1.587993e-05 -2.558170e-05
## ExperienceAtt3 ExperienceAtt4 GenderAtt2 Office2
## (Intercept) -7.104595e-05 -9.828209e-05 -5.946512e-05 -8.726023e-05
## AgeAtt2 2.328880e-06 1.856820e-05 -1.070143e-05 -1.095176e-05
## AgeAtt3 5.107422e-06 2.403977e-07 4.218775e-06 -9.338024e-06
## AgeAtt4 2.009753e-05 2.765290e-05 -2.528724e-06 -9.866019e-07
## EducationAtt2 -1.241574e-06 6.932645e-07 1.584364e-05 7.415814e-06
## EducationAtt3 -4.706344e-06 7.754210e-06 -5.985941e-06 -6.652616e-06
## EducationAtt4 4.978223e-06 4.910344e-06 1.370989e-05 -7.403290e-06
## ExperienceAtt2 7.127116e-05 8.531735e-05 -3.760508e-06 -5.944160e-07
## ExperienceAtt3 1.597281e-04 7.556965e-05 -8.286872e-06 -4.149294e-06
## ExperienceAtt4 7.556965e-05 1.889869e-04 -3.287369e-06 1.821606e-06
## GenderAtt2 -8.286872e-06 -3.287369e-06 9.236807e-05 1.817180e-05
## Office2 -4.149294e-06 1.821606e-06 1.817180e-05 1.705848e-04
## PartisanComp2 1.958378e-06 -5.934361e-06 2.427335e-05 3.565081e-05
## PartisanComp3 -8.995321e-07 -8.570238e-06 6.498285e-06 1.390011e-05
## PartyAtt2 7.118447e-06 3.465023e-06 -8.011891e-06 -1.989038e-06
## PolicyAtt2 9.241445e-06 1.206466e-05 -1.511330e-06 -1.793278e-06
## PolicyAtt3 -9.238811e-06 1.900673e-05 1.705137e-06 -7.286364e-06
## PolicyAtt4 -5.022810e-06 1.049915e-06 1.074272e-06 -4.177361e-06
## PolicyAtt5 -5.739147e-06 -1.333957e-05 2.214789e-06 -7.185966e-07
## RaceAtt2 3.761075e-06 2.659145e-05 2.520562e-05 8.527772e-06
## RaceAtt3 5.931550e-06 1.908468e-05 -9.138263e-06 -5.739464e-06
## RaceAtt4 2.143790e-06 -9.061007e-07 7.043988e-06 2.031758e-06
## ReligionAtt2 -2.749338e-06 5.248379e-06 2.311456e-06 -2.713043e-06
## ReligionAtt3 -1.780545e-05 -1.360683e-06 5.124978e-06 -3.969127e-06
## ReligionAtt4 -3.027229e-05 -1.812266e-05 -3.059357e-06 6.202908e-06
## ReligionAtt5 -2.444993e-05 -3.209266e-05 -9.358140e-07 -1.259571e-05
## PartisanComp2 PartisanComp3 PartyAtt2 PolicyAtt2
## (Intercept) -1.965845e-04 -1.841657e-04 -1.182916e-05 -1.373997e-04
## AgeAtt2 -4.880185e-05 -2.457938e-05 6.051766e-06 -9.138300e-06
## AgeAtt3 -1.493788e-05 -1.277419e-05 4.220510e-07 -2.563808e-05
## AgeAtt4 -1.805414e-05 -1.000023e-05 2.544052e-06 2.807901e-06
## EducationAtt2 9.431674e-06 1.257400e-05 8.235258e-06 1.340193e-05
## EducationAtt3 2.614269e-05 2.046042e-05 -2.884668e-06 -6.083852e-06
## EducationAtt4 3.249743e-05 9.794724e-06 5.563758e-06 -3.318393e-05
## ExperienceAtt2 -7.139032e-06 -1.137810e-05 -4.661624e-06 -1.604718e-05
## ExperienceAtt3 1.958378e-06 -8.995321e-07 7.118447e-06 9.241445e-06
## ExperienceAtt4 -5.934361e-06 -8.570238e-06 3.465023e-06 1.206466e-05
## GenderAtt2 2.427335e-05 6.498285e-06 -8.011891e-06 -1.511330e-06
## Office2 3.565081e-05 1.390011e-05 -1.989038e-06 -1.793278e-06
## PartisanComp2 4.172848e-04 1.746009e-04 -1.033531e-05 -2.308027e-05
## PartisanComp3 1.746009e-04 2.558566e-04 -5.287652e-06 1.360336e-05
## PartyAtt2 -1.033531e-05 -5.287652e-06 8.178082e-06 2.109329e-05
## PolicyAtt2 -2.308027e-05 1.360336e-05 2.109329e-05 2.866557e-04
## PolicyAtt3 2.590303e-06 1.081590e-05 1.920141e-05 1.206630e-04
## PolicyAtt4 -1.031958e-05 1.320521e-06 2.418927e-05 1.546335e-04
## PolicyAtt5 -2.141486e-05 1.047047e-05 2.270602e-05 1.612506e-04
## RaceAtt2 -3.185695e-06 8.937318e-06 -7.875023e-06 3.112860e-05
## RaceAtt3 1.045376e-05 9.076209e-06 -8.858420e-06 -5.340240e-06
## RaceAtt4 -8.715409e-06 7.473412e-06 -6.050503e-06 -2.464356e-05
## ReligionAtt2 3.988141e-05 3.462563e-05 -1.448962e-05 -6.219245e-07
## ReligionAtt3 -2.582347e-05 -4.711155e-06 -1.208628e-06 -1.445380e-05
## ReligionAtt4 -1.052293e-05 -1.262744e-05 8.132287e-06 9.557413e-06
## ReligionAtt5 4.636030e-06 5.974625e-07 -3.464680e-06 -1.460971e-05
## PolicyAtt3 PolicyAtt4 PolicyAtt5 RaceAtt2
## (Intercept) -1.258107e-04 -1.140297e-04 -1.220610e-04 -1.090851e-04
## AgeAtt2 -1.185307e-05 -5.970824e-09 2.111577e-05 -1.430490e-05
## AgeAtt3 -1.609548e-05 -1.549730e-05 -1.562001e-06 -6.556998e-06
## AgeAtt4 -3.730939e-06 2.208888e-06 2.057498e-06 1.247528e-05
## EducationAtt2 1.110484e-05 2.432073e-06 1.539857e-05 -1.383510e-05
## EducationAtt3 2.244232e-05 -8.879163e-06 -1.018016e-05 -1.651655e-05
## EducationAtt4 -1.772621e-05 -2.512129e-05 -2.238930e-05 -2.806434e-05
## ExperienceAtt2 -1.597021e-05 -2.057678e-05 -2.155722e-05 -6.311373e-06
## ExperienceAtt3 -9.238811e-06 -5.022810e-06 -5.739147e-06 3.761075e-06
## ExperienceAtt4 1.900673e-05 1.049915e-06 -1.333957e-05 2.659145e-05
## GenderAtt2 1.705137e-06 1.074272e-06 2.214789e-06 2.520562e-05
## Office2 -7.286364e-06 -4.177361e-06 -7.185966e-07 8.527772e-06
## PartisanComp2 2.590303e-06 -1.031958e-05 -2.141486e-05 -3.185695e-06
## PartisanComp3 1.081590e-05 1.320521e-06 1.047047e-05 8.937318e-06
## PartyAtt2 1.920141e-05 2.418927e-05 2.270602e-05 -7.875023e-06
## PolicyAtt2 1.206630e-04 1.546335e-04 1.612506e-04 3.112860e-05
## PolicyAtt3 2.138091e-04 1.221432e-04 1.150058e-04 9.089407e-06
## PolicyAtt4 1.221432e-04 2.495322e-04 1.558096e-04 1.522038e-05
## PolicyAtt5 1.150058e-04 1.558096e-04 2.540585e-04 2.537231e-06
## RaceAtt2 9.089407e-06 1.522038e-05 2.537231e-06 1.949718e-04
## RaceAtt3 1.697495e-07 -1.507427e-05 -2.443239e-05 8.181032e-05
## RaceAtt4 -9.101311e-06 -3.612063e-05 -4.032624e-05 8.813656e-05
## ReligionAtt2 -1.047869e-05 -2.209814e-05 -3.901009e-06 -4.220626e-06
## ReligionAtt3 -1.213364e-05 -1.878008e-05 -3.045910e-05 3.164258e-06
## ReligionAtt4 1.057961e-05 2.536628e-05 1.723533e-05 -1.893814e-06
## ReligionAtt5 -5.650252e-06 2.508231e-06 -2.228289e-05 -4.665389e-06
## RaceAtt3 RaceAtt4 ReligionAtt2 ReligionAtt3
## (Intercept) -5.934394e-05 -7.309419e-05 -1.466681e-04 -1.038623e-04
## AgeAtt2 -1.673862e-05 1.298564e-06 -8.452206e-06 7.150608e-06
## AgeAtt3 -1.546613e-05 2.193921e-06 -7.865566e-06 -1.869415e-05
## AgeAtt4 7.064730e-08 -8.382058e-06 -1.202944e-06 -7.090705e-06
## EducationAtt2 -3.500194e-05 -7.370871e-06 3.442409e-05 1.622688e-05
## EducationAtt3 -1.657787e-05 -6.268719e-06 1.309746e-05 8.882222e-06
## EducationAtt4 -7.370590e-06 2.736738e-07 2.564343e-05 1.432672e-05
## ExperienceAtt2 9.618816e-06 3.602450e-06 -4.923990e-06 -2.937522e-05
## ExperienceAtt3 5.931550e-06 2.143790e-06 -2.749338e-06 -1.780545e-05
## ExperienceAtt4 1.908468e-05 -9.061007e-07 5.248379e-06 -1.360683e-06
## GenderAtt2 -9.138263e-06 7.043988e-06 2.311456e-06 5.124978e-06
## Office2 -5.739464e-06 2.031758e-06 -2.713043e-06 -3.969127e-06
## PartisanComp2 1.045376e-05 -8.715409e-06 3.988141e-05 -2.582347e-05
## PartisanComp3 9.076209e-06 7.473412e-06 3.462563e-05 -4.711155e-06
## PartyAtt2 -8.858420e-06 -6.050503e-06 -1.448962e-05 -1.208628e-06
## PolicyAtt2 -5.340240e-06 -2.464356e-05 -6.219245e-07 -1.445380e-05
## PolicyAtt3 1.697495e-07 -9.101311e-06 -1.047869e-05 -1.213364e-05
## PolicyAtt4 -1.507427e-05 -3.612063e-05 -2.209814e-05 -1.878008e-05
## PolicyAtt5 -2.443239e-05 -4.032624e-05 -3.901009e-06 -3.045910e-05
## RaceAtt2 8.181032e-05 8.813656e-05 -4.220626e-06 3.164258e-06
## RaceAtt3 1.530199e-04 6.886890e-05 2.783120e-05 1.520464e-05
## RaceAtt4 6.886890e-05 1.609379e-04 1.215535e-05 2.376640e-05
## ReligionAtt2 2.783120e-05 1.215535e-05 2.232844e-04 1.103774e-04
## ReligionAtt3 1.520464e-05 2.376640e-05 1.103774e-04 2.368516e-04
## ReligionAtt4 -1.547515e-06 1.274415e-06 9.253509e-05 1.145016e-04
## ReligionAtt5 1.294152e-05 1.351672e-05 1.230710e-04 1.396555e-04
## ReligionAtt4 ReligionAtt5
## (Intercept) -1.098697e-04 -9.412861e-05
## AgeAtt2 -4.824047e-06 -1.228641e-05
## AgeAtt3 -1.534659e-05 -1.669221e-05
## AgeAtt4 4.919749e-06 -7.647932e-06
## EducationAtt2 2.162740e-05 -8.365031e-06
## EducationAtt3 1.721603e-05 -9.862392e-07
## EducationAtt4 1.202488e-05 1.587993e-05
## ExperienceAtt2 -2.615903e-05 -2.558170e-05
## ExperienceAtt3 -3.027229e-05 -2.444993e-05
## ExperienceAtt4 -1.812266e-05 -3.209266e-05
## GenderAtt2 -3.059357e-06 -9.358140e-07
## Office2 6.202908e-06 -1.259571e-05
## PartisanComp2 -1.052293e-05 4.636030e-06
## PartisanComp3 -1.262744e-05 5.974625e-07
## PartyAtt2 8.132287e-06 -3.464680e-06
## PolicyAtt2 9.557413e-06 -1.460971e-05
## PolicyAtt3 1.057961e-05 -5.650252e-06
## PolicyAtt4 2.536628e-05 2.508231e-06
## PolicyAtt5 1.723533e-05 -2.228289e-05
## RaceAtt2 -1.893814e-06 -4.665389e-06
## RaceAtt3 -1.547515e-06 1.294152e-05
## RaceAtt4 1.274415e-06 1.351672e-05
## ReligionAtt2 9.253509e-05 1.230710e-04
## ReligionAtt3 1.145016e-04 1.396555e-04
## ReligionAtt4 2.133909e-04 1.283117e-04
## ReligionAtt5 1.283117e-04 2.503134e-04
##
## $samplesize_prof
## [1] 20384
##
## $formula
## VotingTask ~ AgeAtt + EducationAtt + ExperienceAtt + GenderAtt +
## Office + PartisanComp + PartyAtt + PolicyAtt + RaceAtt +
## ReligionAtt
## <environment: 0x0000023eb4385200>
##
## $baselines
## $baselines$AgeAtt
## [1] "1"
##
## $baselines$EducationAtt
## [1] "1"
##
## $baselines$ExperienceAtt
## [1] "1"
##
## $baselines$GenderAtt
## [1] "1"
##
## $baselines$Office
## [1] "1"
##
## $baselines$PartisanComp
## [1] "1"
##
## $baselines$PartyAtt
## [1] "1"
##
## $baselines$PolicyAtt
## [1] "1"
##
## $baselines$RaceAtt
## [1] "1"
##
## $baselines$ReligionAtt
## [1] "1"
##
##
## $continuous
## list()
##
## $numrespondents
## [1] 1274
##
## $weights
## # A tibble: 20,384 × 1
## WEIGHT
## <dbl>
## 1 0.234
## 2 0.234
## 3 0.234
## 4 0.234
## 5 0.234
## 6 0.234
## 7 0.234
## 8 0.234
## 9 0.234
## 10 0.234
## # ℹ 20,374 more rows
##
## $user.names
## $user.names$VotingTask
## [1] "Voting.Task"
##
## $user.names$ReligionAtt
## [1] "Religion.Att"
##
## $user.names$GenderAtt
## [1] "Gender.Att"
##
## $user.names$RaceAtt
## [1] "Race.Att"
##
## $user.names$EducationAtt
## [1] "Education.Att"
##
## $user.names$AgeAtt
## [1] "Age.Att"
##
## $user.names$ExperienceAtt
## [1] "Experience.Att"
##
## $user.names$PartyAtt
## [1] "Party.Att"
##
## $user.names$PolicyAtt
## [1] "Policy.Att"
##
## $user.names$Office
## [1] "Office"
##
## $user.names$PartisanComp
## [1] "Partisan_Comp"
##
##
## $user.levels
## list()
##
## $data
## # A tibble: 20,384 × 75
## CaseId WEIGHT ConfidenceinGod Secularism1 Secularism2 Secularism3 Secularism4
## <dbl> <dbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>
## 1 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 2 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 3 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 4 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 5 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 6 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 7 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 8 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 9 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## 10 53 0.234 5 [While I hav… 2 [2] 5 [5] 2 [2] 3 [3]
## # ℹ 20,374 more rows
## # ℹ 68 more variables: MayorPresidentRandom1 <dbl+lbl>,
## # AttributeOrder1 <dbl+lbl>, AttributeOrder2 <dbl+lbl>,
## # AttributeOrder3 <dbl+lbl>, AttributeOrder4 <dbl+lbl>,
## # AttributeOrder5 <dbl+lbl>, AttributeOrder6 <dbl+lbl>,
## # AttributeOrder7 <dbl+lbl>, AttributeOrder8 <dbl+lbl>, PartyID7 <dbl+lbl>,
## # PartyID5 <dbl+lbl>, IDEO <dbl+lbl>, RELIG <dbl+lbl>, RELIGOE <chr>, …
##
## attr(,"class")
## [1] "amce"