link: https://rpubs.com/ReginaPC/1194137 ## R Markdown

library(wooldridge)
attach(mroz)
names(mroz)
##  [1] "inlf"     "hours"    "kidslt6"  "kidsge6"  "age"      "educ"    
##  [7] "wage"     "repwage"  "hushrs"   "husage"   "huseduc"  "huswage" 
## [13] "faminc"   "mtr"      "motheduc" "fatheduc" "unem"     "city"    
## [19] "exper"    "nwifeinc" "lwage"    "expersq"
MCO1<-lm(lwage~educ + exper+expersq, data=mroz)
summary(MCO1)
## 
## Call:
## lm(formula = lwage ~ educ + exper + expersq, data = mroz)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.08404 -0.30627  0.04952  0.37498  2.37115 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.5220406  0.1986321  -2.628  0.00890 ** 
## educ         0.1074896  0.0141465   7.598 1.94e-13 ***
## exper        0.0415665  0.0131752   3.155  0.00172 ** 
## expersq     -0.0008112  0.0003932  -2.063  0.03974 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6664 on 424 degrees of freedom
##   (325 observations deleted due to missingness)
## Multiple R-squared:  0.1568, Adjusted R-squared:  0.1509 
## F-statistic: 26.29 on 3 and 424 DF,  p-value: 1.302e-15
MES1<-lm(educ~exper+expersq+motheduc+fatheduc, data=mroz)
summary(MES1)
## 
## Call:
## lm(formula = educ ~ exper + expersq + motheduc + fatheduc, data = mroz)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.4990 -1.1214  0.0277  0.9584  6.6078 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.3667162  0.2667111  31.370  < 2e-16 ***
## exper        0.0853780  0.0255485   3.342 0.000874 ***
## expersq     -0.0018564  0.0008276  -2.243 0.025182 *  
## motheduc     0.1856173  0.0259869   7.143 2.17e-12 ***
## fatheduc     0.1845745  0.0244979   7.534 1.42e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.964 on 748 degrees of freedom
## Multiple R-squared:  0.2624, Adjusted R-squared:  0.2584 
## F-statistic: 66.52 on 4 and 748 DF,  p-value: < 2.2e-16
mroz$educpred=MES1$fitted.values
summary(mroz)
##       inlf            hours           kidslt6          kidsge6     
##  Min.   :0.0000   Min.   :   0.0   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:   0.0   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :1.0000   Median : 288.0   Median :0.0000   Median :1.000  
##  Mean   :0.5684   Mean   : 740.6   Mean   :0.2377   Mean   :1.353  
##  3rd Qu.:1.0000   3rd Qu.:1516.0   3rd Qu.:0.0000   3rd Qu.:2.000  
##  Max.   :1.0000   Max.   :4950.0   Max.   :3.0000   Max.   :8.000  
##                                                                    
##       age             educ            wage            repwage    
##  Min.   :30.00   Min.   : 5.00   Min.   : 0.1282   Min.   :0.00  
##  1st Qu.:36.00   1st Qu.:12.00   1st Qu.: 2.2626   1st Qu.:0.00  
##  Median :43.00   Median :12.00   Median : 3.4819   Median :0.00  
##  Mean   :42.54   Mean   :12.29   Mean   : 4.1777   Mean   :1.85  
##  3rd Qu.:49.00   3rd Qu.:13.00   3rd Qu.: 4.9708   3rd Qu.:3.58  
##  Max.   :60.00   Max.   :17.00   Max.   :25.0000   Max.   :9.98  
##                                  NA's   :325                     
##      hushrs         husage         huseduc         huswage       
##  Min.   : 175   Min.   :30.00   Min.   : 3.00   Min.   : 0.4121  
##  1st Qu.:1928   1st Qu.:38.00   1st Qu.:11.00   1st Qu.: 4.7883  
##  Median :2164   Median :46.00   Median :12.00   Median : 6.9758  
##  Mean   :2267   Mean   :45.12   Mean   :12.49   Mean   : 7.4822  
##  3rd Qu.:2553   3rd Qu.:52.00   3rd Qu.:15.00   3rd Qu.: 9.1667  
##  Max.   :5010   Max.   :60.00   Max.   :17.00   Max.   :40.5090  
##                                                                  
##      faminc           mtr            motheduc         fatheduc     
##  Min.   : 1500   Min.   :0.4415   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.:15428   1st Qu.:0.6215   1st Qu.: 7.000   1st Qu.: 7.000  
##  Median :20880   Median :0.6915   Median :10.000   Median : 7.000  
##  Mean   :23081   Mean   :0.6789   Mean   : 9.251   Mean   : 8.809  
##  3rd Qu.:28200   3rd Qu.:0.7215   3rd Qu.:12.000   3rd Qu.:12.000  
##  Max.   :96000   Max.   :0.9415   Max.   :17.000   Max.   :17.000  
##                                                                    
##       unem             city            exper          nwifeinc       
##  Min.   : 3.000   Min.   :0.0000   Min.   : 0.00   Min.   :-0.02906  
##  1st Qu.: 7.500   1st Qu.:0.0000   1st Qu.: 4.00   1st Qu.:13.02504  
##  Median : 7.500   Median :1.0000   Median : 9.00   Median :17.70000  
##  Mean   : 8.624   Mean   :0.6428   Mean   :10.63   Mean   :20.12896  
##  3rd Qu.:11.000   3rd Qu.:1.0000   3rd Qu.:15.00   3rd Qu.:24.46600  
##  Max.   :14.000   Max.   :1.0000   Max.   :45.00   Max.   :96.00000  
##                                                                      
##      lwage            expersq        educpred     
##  Min.   :-2.0542   Min.   :   0   Min.   : 8.606  
##  1st Qu.: 0.8165   1st Qu.:  16   1st Qu.:11.515  
##  Median : 1.2476   Median :  81   Median :12.267  
##  Mean   : 1.1902   Mean   : 178   Mean   :12.287  
##  3rd Qu.: 1.6036   3rd Qu.: 225   3rd Qu.:13.089  
##  Max.   : 3.2189   Max.   :2025   Max.   :15.328  
##  NA's   :325
MES2=lm(lwage~educpred+exper+expersq, data=mroz)
MES2
## 
## Call:
## lm(formula = lwage ~ educpred + exper + expersq, data = mroz)
## 
## Coefficients:
## (Intercept)     educpred        exper      expersq  
##   0.1332094    0.0568605    0.0421082   -0.0008565
library(AER)
## Cargando paquete requerido: car
## Cargando paquete requerido: carData
## Cargando paquete requerido: lmtest
## Cargando paquete requerido: zoo
## 
## Adjuntando el paquete: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Cargando paquete requerido: sandwich
## Cargando paquete requerido: survival
IV1=ivreg(lwage~educ+exper+expersq|exper+expersq+motheduc+fatheduc)
IV1
## 
## Call:
## ivreg(formula = lwage ~ educ + exper + expersq | exper + expersq +     motheduc + fatheduc)
## 
## Coefficients:
## (Intercept)         educ        exper      expersq  
##    0.048100     0.061397     0.044170    -0.000899

library(stargazer)

library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(MCO1,MES2,IV1, type="text")
## 
## ==============================================================
##                                      Dependent variable:      
##                                -------------------------------
##                                             lwage             
##                                       OLS         instrumental
##                                                     variable  
##                                   (1)      (2)        (3)     
## --------------------------------------------------------------
## educ                           0.107***              0.061*   
##                                 (0.014)             (0.031)   
##                                                               
## educpred                                  0.057*              
##                                          (0.031)              
##                                                               
## exper                          0.042***  0.042***   0.044***  
##                                 (0.013)  (0.014)    (0.013)   
##                                                               
## expersq                        -0.001**  -0.001**   -0.001**  
##                                (0.0004)  (0.0004)   (0.0004)  
##                                                               
## Constant                       -0.522***  0.133      0.048    
##                                 (0.199)  (0.382)    (0.400)   
##                                                               
## --------------------------------------------------------------
## Observations                      428      428        428     
## R2                               0.157    0.050      0.136    
## Adjusted R2                      0.151    0.043      0.130    
## Residual Std. Error (df = 424)   0.666    0.708      0.675    
## F Statistic (df = 3; 424)      26.286*** 7.363***             
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
summary(IV1, diagnostics=T)
## 
## Call:
## ivreg(formula = lwage ~ educ + exper + expersq | exper + expersq + 
##     motheduc + fatheduc)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0986 -0.3196  0.0551  0.3689  2.3493 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.0481003  0.4003281   0.120  0.90442   
## educ         0.0613966  0.0314367   1.953  0.05147 . 
## exper        0.0441704  0.0134325   3.288  0.00109 **
## expersq     -0.0008990  0.0004017  -2.238  0.02574 * 
## 
## Diagnostic tests:
##                  df1 df2 statistic p-value    
## Weak instruments   2 423    55.400  <2e-16 ***
## Wu-Hausman         1 423     2.793  0.0954 .  
## Sargan             1  NA     0.378  0.5386    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6747 on 424 degrees of freedom
## Multiple R-Squared: 0.1357,  Adjusted R-squared: 0.1296 
## Wald test: 8.141 on 3 and 424 DF,  p-value: 2.787e-05
library(wooldridge)
Mlogit=glm(formula=inlf~nwifeinc+educ+exper+expersq+age+kidslt6+kidsge6, mroz, family=binomial(link="logit"))
summary(Mlogit)
## 
## Call:
## glm(formula = inlf ~ nwifeinc + educ + exper + expersq + age + 
##     kidslt6 + kidsge6, family = binomial(link = "logit"), data = mroz)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.425452   0.860365   0.495  0.62095    
## nwifeinc    -0.021345   0.008421  -2.535  0.01126 *  
## educ         0.221170   0.043439   5.091 3.55e-07 ***
## exper        0.205870   0.032057   6.422 1.34e-10 ***
## expersq     -0.003154   0.001016  -3.104  0.00191 ** 
## age         -0.088024   0.014573  -6.040 1.54e-09 ***
## kidslt6     -1.443354   0.203583  -7.090 1.34e-12 ***
## kidsge6      0.060112   0.074789   0.804  0.42154    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1029.75  on 752  degrees of freedom
## Residual deviance:  803.53  on 745  degrees of freedom
## AIC: 819.53
## 
## Number of Fisher Scoring iterations: 4
exp(coefficients(Mlogit))
## (Intercept)    nwifeinc        educ       exper     expersq         age 
##   1.5302825   0.9788810   1.2475360   1.2285929   0.9968509   0.9157386 
##     kidslt6     kidsge6 
##   0.2361344   1.0619557
RV=with(Mlogit,null.deviance-deviance)
pvalue=with(Mlogit,pchisq(RV, df.null-df.residual, lower.tail=FALSE))
R2MCFadeen=with(Mlogit, 1-(deviance/null.deviance))
R2MCFadeen 
## [1] 0.2196814