x <- 1:30
n <- length(x)
b0 <- 90
b1 <- 1.2
set.seed(2)
e <- rnorm(n, mean = 0, sd = 5)
y <- b0 + b1 * x + e
ybar <- mean(y)
d <- data.frame(x, y)
d
## x y
## 1 1 86.71543
## 2 2 93.32425
## 3 3 101.53923
## 4 4 89.14812
## 5 5 95.59874
## 6 6 97.86210
## 7 7 101.93977
## 8 8 98.40151
## 9 9 110.72237
## 10 10 101.30606
## 11 11 105.28825
## 12 12 109.30876
## 13 13 103.63652
## 14 14 101.60166
## 15 15 116.91114
## 16 16 97.64465
## 17 17 114.79302
## 18 18 111.77903
## 19 19 117.86414
## 20 20 116.16133
## 21 21 125.65410
## 22 22 110.40037
## 23 23 125.54819
## 24 24 128.57326
## 25 25 120.02469
## 26 26 108.94147
## 27 27 124.78619
## 28 28 120.61721
## 29 29 128.76102
## 30 30 127.44818
COL <- c(rgb(255, 0, 0, 255, max = 255),
rgb( 0, 0, 255, 255, max = 255),
rgb( 0, 155, 0, 255, max = 255))
matplot(x, y, pch = 1, col = COL[1])
grid()

fit <- lm(y ~ x, data = d)
summary(fit)
##
## Call:
## lm(formula = y ~ x, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.5989 -2.8452 0.0335 3.6787 9.2076
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.8526 2.2356 40.638 < 2e-16 ***
## x 1.2188 0.1259 9.678 1.97e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.97 on 28 degrees of freedom
## Multiple R-squared: 0.7699, Adjusted R-squared: 0.7616
## F-statistic: 93.66 on 1 and 28 DF, p-value: 1.972e-10
matplot(x, y, pch = 1, col = COL[1], main = '回帰分析')
grid()
matlines(x, fit$fitted, col = COL[2])
library(latex2exp)
legend('topleft', lty = c(NA, 1), pch = c(1, NA), col = COL,
legend = c('Data', TeX('$\\hat{y}_i = b_0 + b_1 x_i $')))
library(plotly)

plot_ly() |>
add_trace(x = x, y = y, mode = 'markers', name = 'Data') |>
add_trace(x = x, y = fit$fitted, mode = 'lines', name = '$\\hat{y}_i = b_0 + b_1 x_i $') |>
layout(font = list(size = 11, color = 'red', family = 'UD Digi Kyokasho NK-R'),
title = '回帰分析',
xaxis = list(title = 'x'),
yaxis = list(title = 'y')) |>
config(mathjax = 'cdn')