# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(ggrepel)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
#choose stocks
symbols <- c("NFLX", "TSLA", "COST", "GOOG")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "COST" "GOOG" "NFLX" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 COST 0.25
## 2 GOOG 0.25
## 3 NFLX 0.25
## 4 TSLA 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.196
## 2 2013-02-28 0.0265
## 3 2013-03-28 0.0321
## 4 2013-04-30 0.136
## 5 2013-05-31 0.177
## 6 2013-06-28 0.0108
## 7 2013-07-31 0.110
## 8 2013-08-30 0.0716
## 9 2013-09-30 0.0707
## 10 2013-10-31 0.00978
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0628 0.0628
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.02809847
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 5 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 COST 0.0127 0.0478
## 2 GOOG 0.0181 0.0535
## 3 NFLX 0.0446 0.133
## 4 TSLA 0.037 0.145
## 5 Portfolio 0.0281 0.0628
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_label_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 37 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-12-31 0.0753
## 2 2015-01-30 0.0678
## 3 2015-02-27 0.0678
## 4 2015-03-31 0.0700
## 5 2015-04-30 0.0680
## 6 2015-05-29 0.0607
## 7 2015-06-30 0.0607
## 8 2015-07-31 0.0608
## 9 2015-08-31 0.0609
## 10 2015-09-30 0.0606
## # ℹ 27 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24 Months Rolling Volatility") +
theme(plot.title = element_text(hjust = .5))