knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE, results = "markup")
# Install packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl) # for importing excel files
# excel file
data <- read_excel("../00_data/myData NH Public Schools.xlsx")
data
## # A tibble: 492 × 10
## CITY STATE COUNTY AREA SCHOOL_LEVEL LEVEL_AGE_POPULATION ENROLLMENT
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 ALTON NH BELKN… R High 571 526
## 2 ALTON NH BELKN… R Primary 582 538
## 3 BELMONT NH BELKN… R High 484 451
## 4 BELMONT NH BELKN… R Middle 440 406
## 5 BELMONT NH BELKN… R Primary 456 428
## 6 CTR. BARNSTE… NH BELKN… R Primary 562 512
## 7 GILFORD NH BELKN… R Middle 369 337
## 8 GILFORD NH BELKN… R Primary 405 376
## 9 GILFORD NH BELKN… R High 588 540
## 10 GILMANTON IW NH BELKN… R Primary 439 407
## # ℹ 482 more rows
## # ℹ 3 more variables: START_GRADE <chr>, END_GRADE <chr>, NOT_ENROLLED <dbl>
Do rural areas have more school-aged youth than urban areas?
ggplot(data = data) +
geom_point(alpha = 0.3, mapping = aes(x = ENROLLMENT, y = SCHOOL_LEVEL, color = AREA))
Evidence shows that there are a higher number of school-aged youth in urban areas than rural areas?