Work progress

Focal plants

read_xlsx('./A_tridentata/Data/TridentataMasterData.xlsx', 
          'FocalSagebrush') %>%
  group_by(plot) %>%
  summarise(Count = n() ) %>%
  pander("Seems all 25 plots have had data for 20 focal plants collected.")
Seems all 25 plots have had data for 20 focal plants collected.
plot Count
801 20
802 20
803 20
805 20
806 20
807 20
809 20
810 20
811 20
812 20
813 20
814 20
815 20
816 20
817 20
818 20
819 20
820 20
821 20
822 20
823 20
824 20
825 20
826 20
827 20

Plot-level surveys

read_xlsx('./A_tridentata/Data/TridentataMasterData.xlsx', 
          'PlotLevelSagebrush') %>%
  mutate(plot = plot + 800) %>%
  group_by(plot) %>%
  summarise(Count = n(), 
            `Height (mean ± S.E.)` = paste0(round(mean(height), 0), ' ± ', 
                                            round(sd(height)/sqrt(n()), 1))) %>%
  pander('Seems also all 25 plots have had plot-level sagebrush inventoried.')
Seems also all 25 plots have had plot-level sagebrush inventoried.
plot Count Height (mean ± S.E.)
801 334 65 ± 1.1
802 499 61 ± 0.9
803 242 75 ± 1.3
805 100 69 ± 2
806 259 59 ± 1.3
807 70 67 ± 2.7
809 184 69 ± 1.6
810 211 77 ± 1.1
811 211 69 ± 1.3
812 292 65 ± 1.2
813 401 66 ± 1.1
814 175 64 ± 1.5
815 335 65 ± 1.1
816 179 70 ± 1.2
817 130 66 ± 1.7
818 126 67 ± 1.8
819 412 61 ± 1
820 98 66 ± 1.8
821 370 56 ± 0.9
822 270 65 ± 1.3
823 293 62 ± 1.3
824 240 61 ± 1.2
825 297 60 ± 1.1
826 366 62 ± 1.1
827 366 69 ± 1.2

Plant community composition

read_xlsx('./A_tridentata/Data/TridentataMasterData.xlsx', 
          'CommunityComp') %>%
  group_by(Plot, Transect) %>%
  summarise(Count = n() , .groups = 'drop') %>%
  mutate(Plot = Plot + 800, 
         Transect = paste('Transect ', Transect)) %>%
  pivot_wider(names_from = Transect, 
              values_from = Count) %>%
  pander("Furthermore it seems that DFW did LPI measurements on each of the 25 plots as well; data are number of points per transect recorded per plot.")
Furthermore it seems that DFW did LPI measurements on each of the 25 plots as well; data are number of points per transect recorded per plot.
Plot Transect 1 Transect 2
801 51 51
802 51 51
803 51 51
805 51 51
806 51 51
807 51 51
809 51 51
810 51 51
811 51 51
812 51 51
813 51 51
814 51 51
815 51 51
816 51 51
817 51 51
818 51 51
819 51 51
820 51 51
821 51 51
822 51 51
823 51 51
824 51 51
825 51 51
826 51 51
827 51 51
LS0tDQp0aXRsZTogIldvcmsgcHJvZ3Jlc3Mgb24gKkEuIHRyaWRlbnRhdGEqIHBsb3RzIg0KYXV0aG9yOiAiREFNIg0KZGF0ZTogIkxhc3QgY29tcGlsZWQgb24gYHIgZm9ybWF0KFN5cy50aW1lKCksICclQiAlZCwgJVknKWAgYXQgYHIgZm9ybWF0KFN5cy50aW1lKCksICclSTolTSAlcCcpYCINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICB0b2NfZGVwdGg6IDMNCiAgICB0aGVtZTogZGVmYXVsdA0KICAgIGhpZ2hsaWdodDogZGVmYXVsdA0KICAgIGRmX3ByaW50OiBwYWdlZA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICBzZWxmX2NvbnRhaW5lZDogRkFMU0UNCi0tLQ0KDQogIA0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFLCBldmFsID0gVFJVRSkNCg0KcGFjbWFuOjpwX2xvYWQodGlkeXZlcnNlLCBtYWdyaXR0ciwgcmVhZHhsLCBwYW5kZXIpDQpwYWNtYW46OnBfbG9hZF9naCgnZGV2YW5tY2cvd2VzYW5kZXJzb24nKQ0KYGBgDQoNCiMgV29yayBwcm9ncmVzcw0KDQojIyBGb2NhbCBwbGFudHMNCg0KYGBge3J9DQpyZWFkX3hsc3goJy4vQV90cmlkZW50YXRhL0RhdGEvVHJpZGVudGF0YU1hc3RlckRhdGEueGxzeCcsIA0KICAgICAgICAgICdGb2NhbFNhZ2VicnVzaCcpICU+JQ0KICBncm91cF9ieShwbG90KSAlPiUNCiAgc3VtbWFyaXNlKENvdW50ID0gbigpICkgJT4lDQogIHBhbmRlcigiU2VlbXMgYWxsIDI1IHBsb3RzIGhhdmUgaGFkIGRhdGEgZm9yIDIwIGZvY2FsIHBsYW50cyBjb2xsZWN0ZWQuIikNCmBgYA0KDQojIyBQbG90LWxldmVsIHN1cnZleXMNCg0KYGBge3J9DQpyZWFkX3hsc3goJy4vQV90cmlkZW50YXRhL0RhdGEvVHJpZGVudGF0YU1hc3RlckRhdGEueGxzeCcsIA0KICAgICAgICAgICdQbG90TGV2ZWxTYWdlYnJ1c2gnKSAlPiUNCiAgbXV0YXRlKHBsb3QgPSBwbG90ICsgODAwKSAlPiUNCiAgZ3JvdXBfYnkocGxvdCkgJT4lDQogIHN1bW1hcmlzZShDb3VudCA9IG4oKSwgDQogICAgICAgICAgICBgSGVpZ2h0IChtZWFuIMKxIFMuRS4pYCA9IHBhc3RlMChyb3VuZChtZWFuKGhlaWdodCksIDApLCAnIMKxICcsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByb3VuZChzZChoZWlnaHQpL3NxcnQobigpKSwgMSkpKSAlPiUNCiAgcGFuZGVyKCdTZWVtcyBhbHNvIGFsbCAyNSBwbG90cyBoYXZlIGhhZCBwbG90LWxldmVsIHNhZ2VicnVzaCBpbnZlbnRvcmllZC4nKQ0KYGBgDQoNCiMjIFBsYW50IGNvbW11bml0eSBjb21wb3NpdGlvbg0KDQpgYGB7cn0NCnJlYWRfeGxzeCgnLi9BX3RyaWRlbnRhdGEvRGF0YS9UcmlkZW50YXRhTWFzdGVyRGF0YS54bHN4JywgDQogICAgICAgICAgJ0NvbW11bml0eUNvbXAnKSAlPiUNCiAgZ3JvdXBfYnkoUGxvdCwgVHJhbnNlY3QpICU+JQ0KICBzdW1tYXJpc2UoQ291bnQgPSBuKCkgLCAuZ3JvdXBzID0gJ2Ryb3AnKSAlPiUNCiAgbXV0YXRlKFBsb3QgPSBQbG90ICsgODAwLCANCiAgICAgICAgIFRyYW5zZWN0ID0gcGFzdGUoJ1RyYW5zZWN0ICcsIFRyYW5zZWN0KSkgJT4lDQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBUcmFuc2VjdCwgDQogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gQ291bnQpICU+JQ0KICBwYW5kZXIoIkZ1cnRoZXJtb3JlIGl0IHNlZW1zIHRoYXQgREZXIGRpZCBMUEkgbWVhc3VyZW1lbnRzIG9uIGVhY2ggb2YgdGhlIDI1IHBsb3RzIGFzIHdlbGw7IGRhdGEgYXJlIG51bWJlciBvZiBwb2ludHMgcGVyIHRyYW5zZWN0IHJlY29yZGVkIHBlciBwbG90LiIpDQpgYGA=