# loading data
Store8<- read.csv(file="C:/develop/OneDrive - MSFT/Documents/MIS410/Shore 8 walmart.csv")
ANS
# Load necessary library
library(dplyr)
# creating max salte
max_sales_date <- Store8 %>%
filter(Weekly_Sales == max(Weekly_Sales)) %>%
select(Date, Weekly_Sales)
# creating min salte
min_sales_date <- Store8 %>%
filter(Weekly_Sales == min(Weekly_Sales)) %>%
select(Date,Weekly_Sales)
# view max & min
max_sales_date
## Date Weekly_Sales
## 1 24-12-2010 1511641
min_sales_date
## Date Weekly_Sales
## 1 26-03-2010 772539.1
ANS
The mean weekly sales of $908,749.52 indicates the average amount of sales generated per week. This value provides a central tendency measure for the weekly sales data.
The standard deviation of $106,280.83 indicates the extent of variability or dispersion in the weekly sales data around the mean. A higher standard deviation suggests that the weekly sales values are more spread out from the mean, whereas a lower standard deviation suggests that the values are closer to the mean.
In this case, a standard deviation of $106,280.83 implies that the weekly sales data has a notable degree of variability around the mean. This variability could be due to various factors such as seasonality, promotions, or external economic factors affecting sales.
mean_sales <- mean(Store8$Weekly_Sales)
sd_sales <- sd(Store8$Weekly_Sales)
# Print the results
print(paste("Mean of Weekly Sales: ", round(mean_sales, 2)))
## [1] "Mean of Weekly Sales: 908749.52"
print(paste("Standard Deviation of Weekly Sales: ", round(sd_sales, 2)))
## [1] "Standard Deviation of Weekly Sales: 106280.83"
ANS
# Load necessary library
library(ggplot2)
# Check the first few rows of the data to ensure it's read correctly
head(Store8)
## Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI
## 1 8 5/2/2010 1004137.1 0 34.14 2.572 214.4715
## 2 8 12/2/2010 994801.4 1 33.34 2.548 214.6214
## 3 8 19-02-2010 963960.4 0 39.10 2.514 214.6665
## 4 8 26-02-2010 847592.1 0 37.91 2.561 214.6941
## 5 8 5/3/2010 881503.9 0 45.64 2.625 214.7217
## 6 8 12/3/2010 860336.2 0 49.76 2.667 214.7492
## Unemployment
## 1 6.299
## 2 6.299
## 3 6.299
## 4 6.299
## 5 6.299
## 6 6.299
# Create a boxplot of the Weekly_Sales column
boxplot(Store8$Weekly_Sales, main = "Boxplot of Weekly Sales", ylab = "Weekly Sales")
# Summarize the distribution of Weekly Sales
summary(Store8$Weekly_Sales)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 772539 855905 893400 908750 929021 1511641
ANS
#scatterplot
ggplot(Store8, aes(x = Temperature, y = Weekly_Sales)) +
geom_point(size = 2) +
labs(title = "Scatterplot of Weekly Sales vs Temperature", x = "Temperature", y = "Weekly Sales")
ANS
# Line plot
ggplot(Store8, aes(x = Date, y = Weekly_Sales, group = 1)) +
geom_line() +
labs(title = "Line Plot of Weekly Sales Over Time", x = "Date", y = "Weekly Sales")