Packages
## Loading required package: nardl
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Loading required package: dynlm
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:dLagM':
##
## MAPE
## The following object is masked from 'package:base':
##
## Recall
## Loading required package: carData
Impor Data
library(rio)
data <- import("https://raw.githubusercontent.com/DindaKhamila/mpdw/main/Pertemuan%203/data3.csv")
str(data)
## 'data.frame': 72 obs. of 2 variables:
## $ AQI: num 30.2 28.2 26.6 25 26 26 26 24 23 24 ...
## $ CO : num 199 198 199 202 205 ...
data
## AQI CO
## 1 30.2 198.6027
## 2 28.2 197.6013
## 3 26.6 198.6027
## 4 25.0 201.9405
## 5 26.0 205.2784
## 6 26.0 208.6163
## 7 26.0 208.6163
## 8 24.0 205.2784
## 9 23.0 200.2716
## 10 24.0 196.9338
## 11 25.0 198.6027
## 12 26.0 200.2716
## 13 27.0 203.6095
## 14 29.0 205.2784
## 15 29.0 205.2784
## 16 29.0 205.2784
## 17 29.0 203.6095
## 18 28.0 201.9405
## 19 27.0 200.2716
## 20 27.0 201.9405
## 21 27.0 201.9405
## 22 27.0 201.9405
## 23 27.0 200.2716
## 24 27.0 200.2716
## 25 27.0 200.2716
## 26 28.0 201.9405
## 27 29.0 203.6095
## 28 31.0 205.2784
## 29 31.0 206.9473
## 30 32.0 206.9473
## 31 32.0 205.2784
## 32 31.0 206.9473
## 33 31.0 206.9473
## 34 30.0 208.6163
## 35 30.0 206.9473
## 36 29.0 205.2784
## 37 27.0 203.6095
## 38 26.0 200.2716
## 39 25.0 200.2716
## 40 25.0 198.6027
## 41 24.0 196.9338
## 42 24.0 195.2648
## 43 25.0 195.2648
## 44 25.0 195.2648
## 45 25.0 196.9338
## 46 26.0 198.6027
## 47 26.0 198.6027
## 48 27.0 198.6027
## 49 27.0 198.6027
## 50 27.0 198.6027
## 51 27.0 200.2716
## 52 28.0 200.2716
## 53 28.0 200.2716
## 54 27.0 200.2716
## 55 27.0 198.6027
## 56 26.0 198.6027
## 57 25.0 198.6027
## 58 23.0 198.6027
## 59 22.0 196.9338
## 60 21.0 193.5959
## 61 20.0 193.5959
## 62 19.0 191.9270
## 63 19.0 191.9270
## 64 20.0 191.9270
## 65 21.0 191.9270
## 66 21.0 191.9270
## 67 21.0 191.9270
## 68 22.0 193.5959
## 69 24.0 195.2648
## 70 26.0 196.9338
## 71 27.0 198.6027
## 72 28.0 198.6027
Pembagian Data
#SPLIT DATA
train<-data[1:57,]
test<-data[58:72,]
#data time series
train.ts<-ts(train)
test.ts<-ts(test)
data.ts<-ts(data)
Model Koyck
Model Koyck didasarkan pada asumsi bahwa semakin jauh jarak lag peubah independen dari periode sekarang maka semakin kecil pengaruh peubah lag terhadap peubah dependen.
Koyck mengusulkan suatu metode untuk menduga model dinamis distributed lag dengan mengasumsikan bahwa semua koefisien \(\beta\) mempunyai tanda sama.
Model kyock merupakan jenis paling umum dari model infinite distributed lag dan juga dikenal sebagai geometric lag
\[ y_t=a(1-\lambda)+\beta_0X_t+\beta_1Z_t+\lambda Y_{t-1}+V_t \]
dengan \[V_t=u_t-\lambda u_{t-1}\]
Pemodelan
Pemodelan model Koyck dengan R dapat menggunakan
dLagM::koyckDlm() . Fungsi umum dari koyckDlm
adalah sebagai berikut.
koyckDlm(x , y , intercept)
Fungsi koyckDlm() akan menerapkan model lag
terdistribusi dengan transformasi Koyck satu prediktor. Nilai
x dan y tidak perlu sebagai objek time
series (ts). intercept dapat dibuat
TRUE untuk memasukkan intersep ke dalam model.
#MODEL KOYCK
model.koyck <- koyckDlm(x = train$CO, y = train$AQI)
summary(model.koyck)
##
## Call:
## "Y ~ (Intercept) + Y.1 + X.t"
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0320 -0.6498 0.0663 0.5993 2.2743
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8427209 9.6005572 0.296 0.768
## Y.1 0.8979076 0.0828445 10.838 4.67e-15 ***
## X.t -0.0007616 0.0549301 -0.014 0.989
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9314 on 53 degrees of freedom
## Multiple R-Squared: 0.8177, Adjusted R-squared: 0.8108
## Wald test: 118.9 on 2 and 53 DF, p-value: < 2.2e-16
##
## Diagnostic tests:
## NULL
##
## alpha beta phi
## Geometric coefficients: 27.8446 -0.0007616174 0.8979076
AIC(model.koyck)
## [1] 155.8773
BIC(model.koyck)
## [1] 163.9787
Dari hasil tersebut, didapat bahwa peubah \(y_{t-1} (4.67e-15)\) memiliki nilai \(P-Value<0.05\). Hal ini menunjukkan bahwa peubah \(y_{t-1}\) berpengaruh signifikan terhadap \(y\). Adapun model keseluruhannya adalah sebagai berikut
\[ \hat{Y_t}=2.8427209-0.0007616X_t+0.8979076Y_{t-1} \]
Peramalan dan Akurasi
Berikut adalah hasil peramalan y untuk 5 periode kedepan menggunakan model koyck
fore.koyck <- forecast(model = model.koyck, x=test$CO, h=15)
fore.koyck
## $forecasts
## [1] 25.13915 25.26537 25.38124 25.48529 25.57998 25.66500 25.74135 25.80990
## [9] 25.87145 25.92672 25.97507 26.01722 26.05379 26.08536 26.11371
##
## $call
## forecast.koyckDlm(model = model.koyck, x = test$CO, h = 15)
##
## attr(,"class")
## [1] "forecast.koyckDlm" "dLagM"
mape.koyck <- MAPE(fore.koyck$forecasts, test$AQI)
#akurasi data training
GoF(model.koyck)
## n MAE MPE MAPE sMAPE MASE MSE
## model.koyck 56 0.692456 -0.001096694 0.0256365 0.02556864 1.081963 0.8210179
## MRAE GMRAE
## model.koyck 787601328 12509.62
Pada perhitungan keakuratan model menggunakan metode Koyck didapatkan nilai MAPE 2,56%. Nilai akurasi model ini kurang dari 10% sehingga dapat dikategorikan sangat baik.
Regression with Distributed Lag
Pemodelan model Regression with Distributed Lag dengan R
dapat menggunakan dLagM::dlm() . Fungsi umum dari
dlm adalah sebagai berikut.
dlm(formula , data , x , y , q , remove )
Fungsi dlm() akan menerapkan model lag terdistribusi
dengan satu atau lebih prediktor. Nilai x dan
y tidak perlu sebagai objek time series
(ts). \(q\) adalah integer
yang mewakili panjang lag yang terbatas.
Pemodelan (Lag=2)
model.dlm <- dlm(x = train$CO,y = train$AQI , q = 2)
summary(model.dlm)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3193 -0.7306 0.3403 0.9480 3.5824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -50.53801 14.21921 -3.554 0.000828 ***
## x.t 0.44406 0.16443 2.701 0.009370 **
## x.1 -0.03462 0.26662 -0.130 0.897193
## x.2 -0.02433 0.16354 -0.149 0.882324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.634 on 51 degrees of freedom
## Multiple R-squared: 0.4581, Adjusted R-squared: 0.4262
## F-statistic: 14.37 on 3 and 51 DF, p-value: 6.574e-07
##
## AIC and BIC values for the model:
## AIC BIC
## 1 215.9118 225.9485
AIC(model.dlm)
## [1] 215.9118
BIC(model.dlm)
## [1] 225.9485
Dari hasil diatas, didapat bahwa \(P-value\) dari intercept (0.000828) dan \(x_{t} (0.009370)<0.05\). Hal ini menunjukkan bahwa intercept dan \(x_{t}\) berpengaruh signifikan terhadap \(y\). Adapun model keseluruhan yang terbentuk adalah sebagai berikut
\[ \hat{Y_t}=-50.53801+0.44406X_t-0.03462X_{t-1}-0.02433X_{t-2} \]
Peramalan dan Akurasi
Berikut merupakan hasil peramalan \(y\) untuk 15 periode kedepan
fore.dlm <- forecast(model = model.dlm, x=test$CO, h=15)
fore.dlm
## $forecasts
## [1] 25.94516 25.20406 23.77964 23.93581 23.27592 23.33370 23.37430 23.37430
## [9] 23.37430 23.37430 24.11540 24.79872 25.44144 26.08415 25.98577
##
## $call
## forecast.dlm(model = model.dlm, x = test$CO, h = 15)
##
## attr(,"class")
## [1] "forecast.dlm" "dLagM"
mape.dlm <- MAPE(fore.dlm$forecasts, test$AQI)
mape.dlm
## [1] 0.1213772
#akurasi data training
GoF(model.dlm)
## n MAE MPE MAPE sMAPE MASE MSE
## model.dlm 55 1.158733 -0.003304009 0.04292434 0.04229426 1.862249 2.474342
## MRAE GMRAE
## model.dlm 5069626475 29978.66
Pada perhitungan keakuratan model menggunakan metode Regression with Distributed Lag didapatkan nilai MAPE 4.23%. Nilai akurasi model ini kurang dari 10% sehingga dapat dikategorikan sangat baik.
Lag Optimum
#penentuan lag optimum
finiteDLMauto(formula = AQI ~ CO,
data = data.frame(train), q.min = 1, q.max = 6,
model.type = "dlm", error.type = "AIC", trace = FALSE)
## q - k MASE AIC BIC GMRAE MBRAE R.Adj.Sq Ljung-Box
## 6 6 1.44155 190.2107 207.5971 18987.97 -0.61847 0.58203 2.058924e-05
Berdasarkan output tersebut, lag optimum didapatkan ketika lag=6. Selanjutnya dilakukan pemodelan untuk lag=6
#model dlm dengan lag optimum
model.dlm2 <- dlm(x = train$CO,y = train$AQI , q = 6)
summary(model.dlm2)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7262 -0.4503 0.1114 0.8057 3.5954
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -49.53042 15.68004 -3.159 0.0029 **
## x.t 0.75821 0.17159 4.419 6.62e-05 ***
## x.1 -0.17542 0.28067 -0.625 0.5353
## x.2 -0.30631 0.27110 -1.130 0.2648
## x.3 0.14117 0.29204 0.483 0.6313
## x.4 0.22282 0.27520 0.810 0.4226
## x.5 -0.27209 0.28147 -0.967 0.3391
## x.6 0.01289 0.16324 0.079 0.9374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.426 on 43 degrees of freedom
## Multiple R-squared: 0.6405, Adjusted R-squared: 0.582
## F-statistic: 10.95 on 7 and 43 DF, p-value: 7.656e-08
##
## AIC and BIC values for the model:
## AIC BIC
## 1 190.2107 207.5971
AIC(model.dlm2)
## [1] 190.2107
BIC(model.dlm2)
## [1] 207.5971
Dari hasil tersebut terdapat peubah yang berpengaruh signifikan terhadap taraf nyata 5% yaitu \(x_t\). Adapun keseluruhan model yang terbentuk adalah
\[ \hat{Y_t}=-49.53042+0.75821X_t-0.17542X_{t-1}-0.30631X_{t-2}+0.14117X_{t-3}+0.22282X_{t-4}-0.27209X_{t-5}+0.01289X_{t-6} \]
Adapun hasil peramalan 15 periode kedepan menggunakan model tersebut adalah sebagai berikut
#peramalan dan akurasi
fore.dlm2 <- forecast(model = model.dlm2, x=test$CO, h=15) #ramal 15 periode kedepan
fore.dlm2
## $forecasts
## [1] 26.13086 24.49358 22.70963 23.78485 23.30628 22.75598 22.97753 23.62861
## [9] 23.21371 23.66781 24.91170 25.88434 26.34577 27.04279 26.84629
##
## $call
## forecast.dlm(model = model.dlm2, x = test$CO, h = 15)
##
## attr(,"class")
## [1] "forecast.dlm" "dLagM"
mape.dlm2<- MAPE(fore.dlm2$forecasts, test$AQI)
#akurasi data training
GoF(model.dlm2)
## n MAE MPE MAPE sMAPE MASE MSE
## model.dlm2 51 0.8937606 -0.002271097 0.03307414 0.03264319 1.441549 1.713954
## MRAE GMRAE
## model.dlm2 3249579156 18987.97
Model tersebut merupakan model yang sangat baik dengan nilai MAPE yang kurang dari 10%, yaitu sebesar 3.3%.
Model Autoregressive
Peubah dependen dipengaruhi oleh peubah independen pada waktu sekarang, serta dipengaruhi juga oleh peubah dependen itu sendiri pada satu waktu yang lalu maka model tersebut disebut autoregressive (Gujarati 2004).
Pemodelan
Pemodelan Autoregressive dilakukan menggunakan fungsi
dLagM::ardlDlm() . Fungsi tersebut akan menerapkan
autoregressive berordo \((p,q)\) dengan satu prediktor. Fungsi umum
dari ardlDlm() adalah sebagai berikut.
ardlDlm(formula = NULL , data = NULL , x = NULL , y = NULL , p = 1 , q = 1 ,
remove = NULL )
Dengan \(p\) adalah integer yang mewakili panjang lag yang terbatas dan \(q\) adalah integer yang merepresentasikan ordo dari proses autoregressive.
model.ardl <- ardlDlm(x = train$CO, y = train$AQI, p = 1 , q = 1)
summary(model.ardl)
##
## Time series regression with "ts" data:
## Start = 2, End = 57
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2430 -0.4403 0.1177 0.4929 1.8901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.40310 7.42525 -0.728 0.47008
## X.t 0.23268 0.06841 3.401 0.00130 **
## X.1 -0.18465 0.06709 -2.753 0.00812 **
## Y.1 0.83951 0.06939 12.098 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8499 on 52 degrees of freedom
## Multiple R-squared: 0.8511, Adjusted R-squared: 0.8425
## F-statistic: 99.04 on 3 and 52 DF, p-value: < 2.2e-16
AIC(model.ardl)
## [1] 146.562
BIC(model.ardl)
## [1] 156.6888
Dari hasil tersebut, didapat bahwa peubah \(x_t (0.00130)\) , \(x_{t-1}(0.00812)\) , dan \(y_{t-1}(< 2e-16)\) memiliki nilai
P-Value < 0.05 Hal ini menunjukkan bahwa ketiga peubah
tersebut berpengaruh signifikan terhadap \(y_t\) pada taraf nyata 5%. Model
keseluruhannya adalah sebagai berikut:
\[ \hat{Y}=-5.40310+0.23268X_t-0.18465X_{t-1}+0.83951Y_{t-1} \]
Peramalan dan Akurasi
fore.ardl <- forecast(model = model.ardl, x=test$CO, h=15)
fore.ardl
## $forecasts
## [1] 25.12311 24.83814 24.13041 24.15262 23.78294 23.78076 23.77893 23.77739
## [9] 23.77611 23.77502 24.16245 24.56785 24.98834 25.42150 25.47697
##
## $call
## forecast.ardlDlm(model = model.ardl, x = test$CO, h = 15)
##
## attr(,"class")
## [1] "forecast.ardlDlm" "dLagM"
Data di atas merupakan hasil peramalan untuk 15 periode ke depan menggunakan Model Autoregressive dengan \(p=1\) dan \(q=1\).
mape.ardl <- MAPE(fore.ardl$forecasts, test$AQI)
mape.ardl
## [1] 0.1317563
#akurasi data training
GoF(model.ardl)
## n MAE MPE MAPE sMAPE MASE MSE
## model.ardl 56 0.6377206 -0.0008738902 0.02353982 0.02347038 0.9964384 0.6708097
## MRAE GMRAE
## model.ardl 1418962508 13514.21
Berdasarkan akurasi di atas, terlihat bahwa nilai MAPE keduanya tidak
jauh berbeda. Artinya, model regresi dengan distribusi lag ini
tidak overfitted atau underfitted
Lag Optimum
#penentuan lag optimum
model.ardl.opt <- ardlBoundOrders(data = data.frame(data), ic = "AIC",
formula = AQI ~ CO )
min_p=c()
for(i in 1:6){
min_p[i]=min(model.ardl.opt$Stat.table[[i]])
}
q_opt=which(min_p==min(min_p, na.rm = TRUE))
p_opt=which(model.ardl.opt$Stat.table[[q_opt]] ==
min(model.ardl.opt$Stat.table[[q_opt]], na.rm = TRUE))
data.frame("q_optimum" = q_opt, "p_optimum" = p_opt,
"AIC"=model.ardl.opt$min.Stat)
## q_optimum p_optimum AIC
## 1 6 15 121.7055
Dari tabel di atas, dapat terlihat bahwa nilai AIC terendah didapat
ketika \(p=15\) dan \(q=6\), yaitu sebesar 121.7055.
Artinya, model autoregressive optimum didapat ketika \(p=15\) dan \(q=6\).
Selanjutnya dapat dilakukan pemodelan dengan nilai \(p\) dan \(q\) optimum seperti inisialisasi di langkah sebelumnya.
Pemodelan DLM & ARDL dengan Library dynlm
Pemodelan regresi dengan peubah lag tidak hanya dapat
dilakukan dengan fungsi pada packages dLagM ,
tetapi terdapat packages dynlm yang dapat
digunakan. Fungsi dynlm secara umum adalah sebagai
berikut.
dynlm(formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, start = NULL, end = NULL, ...)
Untuk menentukan formula model yang akan digunakan,
tersedia fungsi tambahan yang memungkinkan spesifikasi dinamika (melalui
d() dan L()) atau pola linier/siklus dengan
mudah (melalui trend(), season(), dan
harmon()). Semua fungsi formula baru mengharuskan
argumennya berupa objek deret waktu (yaitu, "ts" atau
"zoo").
#sama dengan model dlm q=1
cons_lm1 <- dynlm(AQI ~ CO+L(CO),data = train.ts)
#sama dengan model ardl p=1 q=0
cons_lm2 <- dynlm(AQI ~ CO+L(AQI),data = train.ts)
#sama dengan ardl p=1 q=1
cons_lm3 <- dynlm(AQI ~ CO+L(CO)+L(AQI),data = train.ts)
#sama dengan dlm p=2
cons_lm4 <- dynlm(AQI ~ CO+L(CO)+L(CO,2),data = train.ts)
Ringkasan Model
summary(cons_lm1)
##
## Time series regression with "ts" data:
## Start = 2, End = 57
##
## Call:
## dynlm(formula = AQI ~ CO + L(CO), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3285 -0.7628 0.3010 0.9793 3.5702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -48.66712 12.58867 -3.866 0.000304 ***
## CO 0.43680 0.12826 3.406 0.001266 **
## L(CO) -0.06074 0.12826 -0.474 0.637772
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.644 on 53 degrees of freedom
## Multiple R-squared: 0.4319, Adjusted R-squared: 0.4104
## F-statistic: 20.14 on 2 and 53 DF, p-value: 3.11e-07
summary(cons_lm2)
##
## Time series regression with "ts" data:
## Start = 2, End = 57
##
## Call:
## dynlm(formula = AQI ~ CO + L(AQI), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4394 -0.6878 0.1422 0.4470 2.1296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.21330 7.54764 -1.486 0.143
## CO 0.08079 0.04287 1.884 0.065 .
## L(AQI) 0.81034 0.07271 11.145 1.66e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9011 on 53 degrees of freedom
## Multiple R-squared: 0.8294, Adjusted R-squared: 0.8229
## F-statistic: 128.8 on 2 and 53 DF, p-value: < 2.2e-16
summary(cons_lm3)
##
## Time series regression with "ts" data:
## Start = 2, End = 57
##
## Call:
## dynlm(formula = AQI ~ CO + L(CO) + L(AQI), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2430 -0.4403 0.1177 0.4929 1.8901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.40310 7.42525 -0.728 0.47008
## CO 0.23268 0.06841 3.401 0.00130 **
## L(CO) -0.18465 0.06709 -2.753 0.00812 **
## L(AQI) 0.83951 0.06939 12.098 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8499 on 52 degrees of freedom
## Multiple R-squared: 0.8511, Adjusted R-squared: 0.8425
## F-statistic: 99.04 on 3 and 52 DF, p-value: < 2.2e-16
summary(cons_lm4)
##
## Time series regression with "ts" data:
## Start = 3, End = 57
##
## Call:
## dynlm(formula = AQI ~ CO + L(CO) + L(CO, 2), data = train.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3193 -0.7306 0.3403 0.9480 3.5824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -50.53801 14.21921 -3.554 0.000828 ***
## CO 0.44406 0.16443 2.701 0.009370 **
## L(CO) -0.03462 0.26662 -0.130 0.897193
## L(CO, 2) -0.02433 0.16354 -0.149 0.882324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.634 on 51 degrees of freedom
## Multiple R-squared: 0.4581, Adjusted R-squared: 0.4262
## F-statistic: 14.37 on 3 and 51 DF, p-value: 6.574e-07
Perbandingan Model
akurasi <- matrix(c(mape.koyck, mape.dlm, mape.dlm2, mape.ardl))
row.names(akurasi)<- c("Koyck","DLM 1","DLM 2","Autoregressive")
colnames(akurasi) <- c("MAPE")
akurasi
## MAPE
## Koyck 0.1848113
## DLM 1 0.1213772
## DLM 2 0.1145270
## Autoregressive 0.1317563
Berdasarkan nilai MAPE, model paling optimum didapat pada Model DLM 2 karena memiliki nilai MAPE yang terkecil.
Plot
par(mfrow=c(1,1))
plot(test$CO, test$AQI, type="b", col="black", ylim=c(15,40))
points(test$CO, fore.koyck$forecasts,col="red")
lines(test$CO, fore.koyck$forecasts,col="red")
points(test$CO, fore.dlm$forecasts,col="blue")
lines(test$CO, fore.dlm$forecasts,col="blue")
points(test$CO, fore.dlm2$forecasts,col="orange")
lines(test$CO, fore.dlm2$forecasts,col="orange")
points(test$CO, fore.ardl$forecasts,col="green")
lines(test$CO, fore.ardl$forecasts,col="green")
legend("topleft",c("aktual", "koyck","DLM 1","DLM 2", "autoregressive"), lty=1, col=c("black","red","blue","orange","green"), cex=0.8)
Berdasarkan plot tersebut, terlihat bahwa plot yang paling mendekati data aktualnya adalah Model DLM 2, sehingga dapat disimpulkan model terbaik dalam hal ini adalah model regresi DLM 1
Pengayaan (Regresi Berganda)
Data
data(M1Germany)
data1 = M1Germany[1:144,]
DLM
#Run the search over finite DLMs according to AIC values
finiteDLMauto(formula = logprice ~ interest+logm1,
data = data.frame(data1), q.min = 1, q.max = 5,
model.type = "dlm", error.type = "AIC", trace = FALSE)
## q - k MASE AIC BIC GMRAE MBRAE R.Adj.Sq Ljung-Box
## 5 5 1.77163 -463.1393 -422.0566 1.43662 -1.60494 0.98836 0
#model dlm berganda
model.dlmberganda = dlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , q = 5)
summary(model.dlmberganda)
##
## Call:
## lm(formula = as.formula(model.formula), data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.095761 -0.028610 -0.000012 0.029496 0.102597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.81759 0.11384 -68.669 < 2e-16 ***
## interest.t -1.75616 0.80358 -2.185 0.030707 *
## interest.1 1.38935 1.22707 1.132 0.259679
## interest.2 0.40776 1.23726 0.330 0.742273
## interest.3 1.23130 1.20752 1.020 0.309830
## interest.4 -0.08718 1.20869 -0.072 0.942616
## interest.5 3.06850 0.89380 3.433 0.000808 ***
## logm1.t 0.43219 0.20876 2.070 0.040474 *
## logm1.1 0.42190 0.19807 2.130 0.035109 *
## logm1.2 0.20943 0.12883 1.626 0.106532
## logm1.3 0.22053 0.13011 1.695 0.092567 .
## logm1.4 0.05513 0.21457 0.257 0.797633
## logm1.5 0.03042 0.19192 0.159 0.874296
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04343 on 126 degrees of freedom
## Multiple R-squared: 0.9894, Adjusted R-squared: 0.9884
## F-statistic: 977.9 on 12 and 126 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 -463.1393 -422.0566
model.dlmberganda2 = dlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , q = 1)
summary(model.dlmberganda2)
##
## Call:
## lm(formula = as.formula(model.formula), data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.134002 -0.044697 0.006407 0.036962 0.113063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.77917 0.13299 -58.492 < 2e-16 ***
## interest.t -3.22103 0.94184 -3.420 0.000824 ***
## interest.1 6.52775 0.94501 6.908 1.66e-10 ***
## logm1.t 0.73918 0.08419 8.780 5.61e-15 ***
## logm1.1 0.63330 0.08429 7.513 6.55e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05443 on 138 degrees of freedom
## Multiple R-squared: 0.9832, Adjusted R-squared: 0.9828
## F-statistic: 2025 on 4 and 138 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 -419.7575 -401.9805
ARDL
#Mencari orde lag optimum model ARDL
ardlBoundOrders(data = data1 , formula = logprice ~ interest + logm1,
ic="AIC")
## $p
## interest logm1
## 65 0 4
##
## $q
## [1] 4
##
## $Stat.table
## q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
## p = 1 -760.1786 -757.9195 -846.8342 -975.2079 -965.7536 -958.9072 -956.7315
## p = 2 -760.0433 -759.3090 -843.6247 -971.2514 -961.7929 -955.2809 -953.4890
## p = 3 -753.7746 -753.7746 -841.2485 -970.4543 -961.4343 -953.7173 -950.0412
## p = 4 -829.8076 -832.6436 -832.6436 -971.0837 -962.1804 -955.0429 -953.4667
## p = 5 -749.4144 -753.2292 -962.9290 -962.9290 -961.7063 -954.3406 -951.7660
## p = 6 -742.2103 -742.9945 -891.6195 -952.3771 -952.3771 -952.2461 -950.1105
## p = 7 -728.9374 -733.0286 -851.2943 -945.7445 -944.6879 -944.6879 -949.3720
## p = 8 -747.9277 -746.2948 -812.4289 -937.9446 -938.9491 -937.3393 -937.3393
## p = 9 -722.6891 -724.5786 -863.2734 -928.9215 -927.2914 -926.8716 -936.6432
## p = 10 -714.8175 -714.5658 -816.3319 -918.5218 -918.6350 -916.9076 -921.1246
## p = 11 -703.1807 -705.3383 -794.0772 -909.6457 -908.8225 -906.9542 -912.9605
## p = 12 -716.7111 -714.7403 -774.0127 -910.0315 -910.6834 -908.7146 -909.6612
## p = 13 -697.7175 -698.1931 -793.4602 -895.5927 -894.9273 -893.5995 -897.7589
## p = 14 -686.5600 -685.7967 -766.5292 -886.0709 -885.4341 -885.2283 -890.1638
## p = 15 -676.7280 -678.3689 -753.2854 -875.6392 -874.1257 -874.3117 -879.2727
## q = 8 q = 9 q = 10 q = 11 q = 12 q = 13 q = 14
## p = 1 -954.3375 -946.6293 -936.5328 -927.7728 -920.6435 -917.5463 -918.3110
## p = 2 -951.1470 -943.9360 -933.7047 -924.7949 -917.5334 -913.6213 -914.4063
## p = 3 -948.4683 -941.1039 -930.8509 -922.0563 -914.5728 -910.5351 -913.4996
## p = 4 -948.2330 -941.8238 -931.5689 -923.2663 -916.2063 -911.6023 -913.9345
## p = 5 -947.5994 -939.3767 -929.0155 -920.4475 -913.5968 -909.0781 -911.6312
## p = 6 -945.5758 -937.4076 -927.2439 -919.3949 -911.9537 -907.7394 -910.2890
## p = 7 -945.5181 -937.1826 -926.9640 -917.9619 -910.2774 -905.9449 -907.8712
## p = 8 -941.9617 -933.5959 -923.3691 -914.6251 -907.0608 -902.2187 -903.9255
## p = 9 -936.6432 -935.7172 -925.2881 -917.0877 -911.6973 -903.9027 -904.6405
## p = 10 -926.6891 -926.6891 -924.6986 -917.0904 -911.4197 -903.4313 -903.0612
## p = 11 -917.9145 -918.2328 -918.2328 -919.2867 -913.3674 -904.8733 -903.6541
## p = 12 -916.1321 -914.4362 -914.4610 -914.4610 -912.5159 -904.2394 -901.6216
## p = 13 -905.4744 -903.7559 -902.4406 -902.2530 -902.2530 -902.9434 -901.2363
## p = 14 -896.2370 -896.2620 -894.2896 -897.5711 -899.1407 -899.1407 -902.2350
## p = 15 -884.5637 -886.8221 -884.9832 -890.5665 -893.2335 -891.6220 -891.6220
## q = 15
## p = 1 -908.0863
## p = 2 -904.1665
## p = 3 -903.3006
## p = 4 -903.9256
## p = 5 -901.6220
## p = 6 -900.1824
## p = 7 -897.9867
## p = 8 -894.1031
## p = 9 -894.7387
## p = 10 -893.6199
## p = 11 -893.6060
## p = 12 -892.4805
## p = 13 -892.5115
## p = 14 -893.6214
## p = 15 -891.3741
##
## $min.Stat
## [1] -977.2745
##
## $Stat.p
## interest logm1 Stat
## 65 0 4 -977.2745
## 1 0 0 -976.5191
## 2 1 0 -976.2558
## 17 0 1 -975.9606
## 66 1 4 -975.6027
## 18 1 1 -975.2079
## 49 0 3 -974.4859
## 3 2 0 -974.4275
## 33 0 2 -974.0166
## 50 1 3 -973.7500
## 67 2 4 -973.6028
## 34 1 2 -973.2324
## 19 2 1 -973.2188
## 68 3 4 -972.5992
## 4 3 0 -972.4875
## 51 2 3 -971.7743
## 20 3 1 -971.3872
## 35 2 2 -971.2514
## 69 4 4 -971.0837
## 5 4 0 -970.5114
## 52 3 3 -970.4543
## 81 0 5 -969.9284
## 53 4 3 -969.5311
## 21 4 1 -969.4756
## 36 3 2 -969.3907
## 82 1 5 -968.6783
## 37 4 2 -967.4756
## 83 2 5 -966.8835
## 84 3 5 -965.6393
## 85 4 5 -963.9662
## 86 5 5 -962.9290
## 70 5 4 -961.2547
## 54 5 3 -960.9580
## 97 0 6 -960.7402
## 6 5 0 -960.6858
## 22 5 1 -959.8419
## 98 1 6 -959.6604
## 38 5 2 -957.8547
## 99 2 6 -957.7528
## 100 3 6 -956.7875
## 101 4 6 -955.2416
## 71 6 4 -954.8953
## 87 6 5 -954.6855
## 102 5 6 -954.3662
## 103 6 6 -954.0973
## 7 6 0 -954.0615
## 113 0 7 -953.9160
## 55 6 3 -953.2860
## 23 6 1 -953.1080
## 114 1 7 -952.6540
## 39 6 2 -951.1356
## 115 2 7 -950.6562
## 116 3 7 -949.6038
## 88 7 5 -949.2090
## 72 7 4 -948.5194
## 117 4 7 -947.7999
## 104 7 6 -947.7424
## 56 7 3 -947.6915
## 8 7 0 -947.5092
## 120 7 7 -947.3660
## 24 7 1 -947.0094
## 118 5 7 -946.9631
## 119 6 7 -946.8080
## 40 7 2 -945.0123
## 129 0 8 -943.9035
## 130 1 8 -942.6627
## 131 2 8 -940.6818
## 145 0 9 -940.0114
## 132 3 8 -939.6913
## 89 8 5 -939.1878
## 73 8 4 -938.5330
## 146 1 9 -938.2680
## 133 4 8 -937.8368
## 105 8 6 -937.6834
## 57 8 3 -937.6370
## 9 8 0 -937.5705
## 121 8 7 -937.5351
## 136 7 8 -937.3948
## 25 8 1 -937.0088
## 134 5 8 -936.9393
## 135 6 8 -936.8904
## 147 2 9 -936.3875
## 148 3 9 -936.3159
## 137 8 8 -935.5389
## 41 8 2 -935.0088
## 149 4 9 -934.3458
## 150 5 9 -934.1858
## 152 7 9 -934.0733
## 151 6 9 -932.9538
## 153 8 9 -932.3338
## 154 9 9 -930.9065
## 161 0 10 -929.8056
## 90 9 5 -929.2731
## 74 9 4 -928.5254
## 162 1 10 -928.1257
## 10 9 0 -927.9853
## 58 9 3 -927.9744
## 122 9 7 -927.9061
## 106 9 6 -927.6344
## 26 9 1 -927.4482
## 164 3 10 -926.5271
## 163 2 10 -926.2965
## 138 9 8 -926.1307
## 42 9 2 -925.4484
## 165 4 10 -924.5287
## 168 7 10 -924.2716
## 166 5 10 -924.0521
## 167 6 10 -922.7596
## 169 8 10 -922.5928
## 155 10 9 -921.2169
## 170 9 10 -921.1777
## 177 0 11 -920.2608
## 171 10 10 -920.0124
## 91 10 5 -919.0182
## 178 1 11 -918.7342
## 75 10 4 -918.4135
## 11 10 0 -917.8597
## 59 10 3 -917.7711
## 123 10 7 -917.6569
## 107 10 6 -917.3861
## 27 10 1 -917.2925
## 179 2 11 -916.9417
## 180 3 11 -916.8682
## 193 0 12 -916.1477
## 139 10 8 -915.9643
## 92 11 5 -915.3201
## 43 10 2 -915.2941
## 156 11 9 -915.0851
## 181 4 11 -914.8854
## 194 1 12 -914.4423
## 124 11 7 -914.3141
## 184 7 11 -914.1880
## 76 11 4 -914.1395
## 182 5 11 -914.0440
## 108 11 6 -913.4052
## 140 11 8 -913.3026
## 195 2 12 -913.1680
## 172 11 10 -913.0914
## 60 11 3 -912.7714
## 183 6 11 -912.7548
## 196 3 12 -912.5820
## 185 8 11 -912.5636
## 12 11 0 -912.2009
## 28 11 1 -912.0389
## 186 9 11 -911.1737
## 157 12 9 -911.1513
## 188 11 11 -911.1189
## 93 12 5 -910.7693
## 198 5 12 -910.7434
## 197 4 12 -910.6154
## 125 12 7 -910.5873
## 141 12 8 -910.0719
## 44 11 2 -910.0439
## 187 10 11 -909.9928
## 200 7 12 -909.4197
## 173 12 10 -909.2473
## 77 12 4 -909.1913
## 109 12 6 -908.7753
## 199 6 12 -908.7635
## 201 8 12 -908.1609
## 61 12 3 -908.0357
## 29 12 1 -907.8613
## 209 0 13 -907.6473
## 13 12 0 -907.6158
## 205 12 12 -907.5931
## 204 11 12 -907.5525
## 202 9 12 -907.3633
## 189 12 11 -907.3200
## 210 1 13 -906.1005
## 45 12 2 -905.9070
## 203 10 12 -905.7653
## 211 2 13 -904.7293
## 212 3 13 -903.9077
## 214 5 13 -902.0824
## 158 13 9 -901.9574
## 213 4 13 -901.9144
## 94 13 5 -901.6338
## 126 13 7 -901.3766
## 142 13 8 -900.9367
## 216 7 13 -900.5676
## 225 0 14 -900.5066
## 174 13 10 -900.1413
## 215 6 13 -900.1102
## 78 13 4 -900.0282
## 110 13 6 -899.6703
## 226 1 14 -899.0967
## 217 8 13 -899.0866
## 62 13 3 -898.8589
## 30 13 1 -898.7940
## 190 13 11 -898.4409
## 221 12 13 -898.4110
## 220 11 13 -898.3058
## 218 9 13 -898.2568
## 14 13 0 -898.2039
## 206 13 12 -897.9014
## 227 2 14 -897.3889
## 46 13 2 -896.8637
## 219 10 13 -896.6244
## 222 13 13 -896.4458
## 228 3 14 -896.2512
## 230 5 14 -895.1320
## 95 14 5 -894.6021
## 229 4 14 -894.3023
## 159 14 9 -894.2497
## 127 14 7 -893.9663
## 143 14 8 -893.6932
## 231 6 14 -893.4037
## 79 14 4 -893.1343
## 232 7 14 -893.1064
## 111 14 6 -892.6253
## 175 14 10 -892.5085
## 63 14 3 -891.9131
## 191 14 11 -891.1895
## 233 8 14 -891.1877
## 234 9 14 -891.1729
## 31 14 1 -890.7573
## 236 11 14 -890.5576
## 241 0 15 -890.5500
## 15 14 0 -890.3449
## 237 12 14 -890.1854
## 235 10 14 -889.8957
## 207 14 12 -889.7107
## 242 1 15 -889.0419
## 47 14 2 -888.9410
## 238 13 14 -888.1867
## 223 14 13 -887.7488
## 239 14 14 -887.6659
## 243 2 15 -887.3088
## 244 3 15 -886.0691
## 246 5 15 -884.7479
## 96 15 5 -884.2869
## 245 4 15 -884.1417
## 160 15 9 -883.9364
## 128 15 7 -883.6409
## 144 15 8 -883.4503
## 247 6 15 -883.0158
## 80 15 4 -882.8148
## 248 7 15 -882.7881
## 112 15 6 -882.3106
## 176 15 10 -882.2093
## 64 15 3 -881.6497
## 253 12 15 -881.4274
## 252 11 15 -881.3077
## 250 9 15 -881.1831
## 192 15 11 -880.9028
## 249 8 15 -880.8964
## 32 15 1 -880.5983
## 251 10 15 -880.2736
## 16 15 0 -880.2468
## 254 13 15 -879.4467
## 208 15 12 -879.4364
## 255 14 15 -879.2846
## 48 15 2 -878.8432
## 224 15 13 -877.4985
## 240 15 14 -877.4570
model.ardlDlmberganda = ardlDlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , p = 4 , q = 4)
summary(model.ardlDlmberganda)
##
## Time series regression with "ts" data:
## Start = 5, End = 144
##
## Call:
## dynlm(formula = as.formula(model.text), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0290527 -0.0075965 0.0005726 0.0072745 0.0304486
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0145022 0.1822785 0.080 0.93671
## interest.t 0.0067985 0.2135315 0.032 0.97465
## interest.1 0.6093502 0.3240545 1.880 0.06238 .
## interest.2 0.0798544 0.3221168 0.248 0.80461
## interest.3 -0.3638172 0.3238873 -1.123 0.26347
## interest.4 0.2084240 0.2447331 0.852 0.39604
## logm1.t 0.0828689 0.0457486 1.811 0.07248 .
## logm1.1 -0.0092841 0.0399079 -0.233 0.81642
## logm1.2 -0.1166129 0.0390732 -2.984 0.00342 **
## logm1.3 0.0007016 0.0389297 0.018 0.98565
## logm1.4 0.0447857 0.0425474 1.053 0.29455
## logprice.1 0.3274245 0.0651574 5.025 1.7e-06 ***
## logprice.2 0.1323801 0.0684485 1.934 0.05537 .
## logprice.3 -0.1448245 0.0674268 -2.148 0.03365 *
## logprice.4 0.6730871 0.0636443 10.576 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01132 on 125 degrees of freedom
## Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
## F-statistic: 1.273e+04 on 14 and 125 DF, p-value: < 2.2e-16
#model p interest 0 p logm1 4
rem.p = list(interest = c(1,2,3,4))
remove = list(p = rem.p)
model.ardlDlmberganda2 = ardlDlm(formula = logprice ~ interest + logm1,
data = data.frame(data1) , p = 4 , q = 4 ,
remove = remove)
summary(model.ardlDlmberganda2)
##
## Time series regression with "ts" data:
## Start = 5, End = 144
##
## Call:
## dynlm(formula = as.formula(model.text), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0290369 -0.0083445 0.0009024 0.0079199 0.0303652
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.174838 0.133708 1.308 0.19333
## interest.t 0.448826 0.098736 4.546 1.24e-05 ***
## logm1.t 0.056659 0.043836 1.293 0.19849
## logm1.1 -0.017025 0.039159 -0.435 0.66446
## logm1.2 -0.118413 0.037399 -3.166 0.00193 **
## logm1.3 -0.006454 0.038112 -0.169 0.86580
## logm1.4 0.060220 0.040337 1.493 0.13789
## logprice.1 0.319059 0.062107 5.137 1.00e-06 ***
## logprice.2 0.111794 0.066101 1.691 0.09320 .
## logprice.3 -0.122129 0.065114 -1.876 0.06297 .
## logprice.4 0.699061 0.062611 11.165 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01149 on 129 degrees of freedom
## Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
## F-statistic: 1.73e+04 on 10 and 129 DF, p-value: < 2.2e-16
Proses selanjutnya sama dengan pemodelan menggunakan peubah tunggal.