Aplikasi Metode-Metode Pemulusan

Dinda Khamila Nurfatimah

2023-09-04

library.

library("forecast")
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library("graphics")
library("TTR")
library("TSA")
## Registered S3 methods overwritten by 'TSA':
##   method       from    
##   fitted.Arima forecast
##   plot.Arima   forecast
## 
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar

Impor Data

library(rio)
data <- import("https://raw.githubusercontent.com/DindaKhamila/mpdw/main/Data/DataTugas.csv")

Eksplorasi Data

View(data) #untuk melihat data
str(data) #untuk melihat struktur data
## 'data.frame':    359 obs. of  2 variables:
##  $ Waktu        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ PowerConsumed: num  85.8 85.5 83.5 79.2 76.6 71.1 69 89.2 92.8 79.5 ...
dim(data) #untuk melihat dimensi data
## [1] 359   2

Mengubah data agar terbaca sebagai data deret waktu dengan fungsi ts() .

data.ts <- ts(data$PowerConsumed)
data.ts
## Time Series:
## Start = 1 
## End = 359 
## Frequency = 1 
##   [1]  85.8  85.5  83.5  79.2  76.6  71.1  69.0  89.2  92.8  79.5  92.6  89.4
##  [13]  82.2  77.8 111.8 115.6 117.9 121.9 121.7 112.2 108.0 109.3 111.9 114.2
##  [25] 112.7 105.0 100.5  96.4  41.8  43.1  42.9  44.9  43.8  43.5  44.1  60.3
##  [37]  63.2  68.4  67.6  69.0  64.8  61.2  71.8  71.7  72.7  71.6  71.3  69.2
##  [49]  67.0 111.8 114.9 121.6 128.1 131.6 132.2 132.7  69.0  72.1  71.8  71.1
##  [61]  73.0  68.0  67.3 111.7 121.6 128.0 132.7 132.6 129.7 113.9  57.8  51.2
##  [73]  58.4  63.0  66.1  69.6  68.3  62.5  63.5  62.6  62.4  63.5  60.4  57.2
##  [85]  61.7  64.3  65.9  67.4  71.8  73.9  69.1  61.4  64.1  66.1  66.1  65.4
##  [97]  63.0  60.2 123.2 126.1 135.1 135.2 133.5 136.7 136.0  63.9  63.6  63.8
## [109]  62.5  63.8  60.3  57.9  74.2  76.9  76.9  79.2  82.0  80.4  78.0  98.5
## [121]  99.3 102.4 102.6 100.9  94.6  84.7 116.6 129.0 130.4 115.2 109.3 100.7
## [133]  98.9  91.9  99.3 106.7 111.4 109.7 103.2  98.7  46.1  48.7  46.0  46.1
## [145]  44.1  44.4  42.4  78.4  75.9  74.2  75.9  76.0  69.1  60.8  67.9  67.7
## [157]  70.8  70.4  72.5  58.6  63.7 102.8 110.8 114.0 114.5 105.5 109.2  99.9
## [169]  77.7  75.9  76.6  75.0  76.0  71.4  60.3 103.8 110.9 117.8 115.7 117.0
## [181] 110.1 102.1  57.8  59.9  56.8  58.6  59.9  59.5  62.2  61.5  62.6  63.6
## [193]  63.4  64.0  60.4  58.0  61.6  61.7  60.1  46.1  54.4  57.9  58.2  64.2
## [205]  65.0  65.3  65.0  65.6  61.1  59.2 114.8  99.3 106.4 112.0 122.7 118.5
## [217] 121.0  75.7  78.7  81.3  82.3  84.8  91.7  95.2  62.6  64.0  65.1  63.6
## [229]  64.3  60.7  59.4  67.6  70.2  70.2  73.2  74.8  70.7  70.0 124.6 125.1
## [241] 121.0 113.9 113.4 108.1  94.0  59.2  60.2  60.7  60.6  63.4  59.1 118.5
## [253] 108.0  91.6 100.6 108.6 111.1 105.6  97.2  89.2  73.7  74.4  75.2  78.7
## [265]  79.2  85.8  86.0  88.3  87.9  86.4  80.7  75.3  68.9  72.2  72.3  72.2
## [277]  73.9  66.2  64.6 110.5 106.0 102.7 101.8 100.9  88.4  89.8  74.9  74.9
## [289]  75.4  76.4  77.3  73.3  71.7 115.5 117.8 113.9  98.7 107.7  99.2  89.1
## [301]  52.4  56.4  60.8  62.8  63.0  65.2  62.1  63.2  59.9  62.0  63.2  60.6
## [313]  60.4  58.5  61.2  61.4  62.2  61.4  64.2  59.4  57.5  66.8  67.1  66.5
## [325]  67.0  68.5  64.9  61.6 136.7 139.1 135.2 136.1 134.7 130.7 117.9  69.4
## [337]  67.7  71.8  73.1  72.2  72.0  73.3  68.5  69.5  68.8  66.8  66.8  62.6
## [349]  61.1  62.8  62.9  65.4  64.8  66.8  63.8  62.0 128.5 126.9 134.9

Menampilkan ringkasan data

summary(data.ts)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   41.80   63.40   72.50   82.06  102.25  139.10

Membuat plot data deret waktu

ts.plot(data.ts, xlab="Time Period", ylab="PowerConsumed", 
        main = "Time Series Plot")
points(data.ts)

Kemungkinan pola yang terbentuk dari data adalah pola stasioner atau musiman. Untuk itu, saya akan coba bandingkan dengan metode SMA dan SES untuk pola stasioner serta Winter Multiplikatif untuk pola musiman.

Single Moving Average

Pembagian Data

Pembagian data latih dan data uji dilakukan dengan perbandingan 80% data latih dan 20% data uji.

#membagi data latih dan data uji
training_ma <- data[1:287,]
testing_ma <- data[288:359,]
train_ma.ts <- ts(training_ma$PowerConsumed)
test_ma.ts <- ts(testing_ma$PowerConsumed)

Eksplorasi Data

Eksplorasi data dilakukan pada keseluruhan data, data latih serta data uji menggunakan plot data deret waktu.

#eksplorasi keseluruhan data
plot(data.ts, col="red",main="Plot semua data")
points(data.ts)

#eksplorasi data latih
plot(train_ma.ts, col="purple",main="Plot data latih")
points(train_ma.ts)

#eksplorasi data uji
plot(test_ma.ts, col="blue",main="Plot data uji")
points(test_ma.ts)

Eksplorasi data juga dapat dilakukan menggunakan package ggplot2 dengan terlebih dahulu memanggil library package ggplot2.

#Eksplorasi dengan GGPLOT
library(ggplot2)
ggplot() + 
  geom_line(data = training_ma, aes(x = Waktu, y = PowerConsumed, col = "Data Latih")) +
  geom_line(data = testing_ma, aes(x = Waktu, y = PowerConsumed, col = "Data Uji")) +
  labs(x = "Periode Waktu", y = "Power Consumed", color = "Legend") +
  scale_colour_manual(name="Keterangan:", breaks = c("Data Latih", "Data Uji"),
                      values = c("blue", "red")) + 
  theme_bw() + theme(legend.position = "bottom",
                     plot.caption = element_text(hjust=0.5, size=12))

Single Moving Average (SMA)

Ide dasar dari Single Moving Average (SMA) adalah data suatu periode dipengaruhi oleh data periode sebelumnya. Metode pemulusan ini cocok digunakan untuk pola data stasioner atau konstan. Prinsip dasar metode pemulusan ini adalah data pemulusan pada periode ke-t merupakan rata rata dari m buah data pada periode ke-t hingga periode ke (t-m+1). Data pemulusan pada periode ke-t selanjutnya digunakan sebagai nilai peramalan pada periode ke t+1

Pemulusan menggunakan metode SMA dilakukan dengan fungsi SMA(). Dalam hal ini akan dilakukan pemulusan dengan parameter m=4.

data.sma<-SMA(train_ma.ts, n=4)
data.sma
## Time Series:
## Start = 1 
## End = 287 
## Frequency = 1 
##   [1]      NA      NA      NA  83.500  81.200  77.600  73.975  76.475  80.525
##  [10]  82.625  88.525  88.575  85.925  85.500  90.300  96.850 105.775 116.800
##  [19] 119.275 118.425 115.950 112.800 110.350 110.850 112.025 110.950 108.100
##  [28] 103.650  85.925  70.450  56.050  43.175  43.675  43.775  44.075  47.925
##  [37]  52.775  59.000  64.875  67.050  67.450  65.650  66.700  67.375  69.350
##  [46]  71.950  71.825  71.200  69.775  79.825  90.725 103.825 119.100 124.050
##  [55] 128.375 131.150 116.375 101.500  86.400  71.000  72.000  70.975  69.850
##  [64]  80.000  92.150 107.150 123.500 128.725 130.750 127.225 108.500  88.150
##  [73]  70.325  57.600  59.675  64.275  66.750  66.625  65.975  64.225  62.750
##  [82]  63.000  62.225  60.875  60.700  60.900  62.275  64.825  67.350  69.750
##  [91]  70.550  69.050  67.125  65.175  64.425  65.425  65.150  63.675  77.950
## [100]  93.125 111.150 129.900 132.475 135.125 135.350 117.525 100.050  81.825
## [109]  63.450  63.425  62.600  61.125  64.050  67.325  71.475  76.800  78.750
## [118]  79.625  79.900  84.725  89.050  94.550 100.700 101.300 100.125  95.700
## [127]  99.200 106.225 115.175 122.800 120.975 113.900 106.025 100.200  97.700
## [136]  99.200 102.325 106.775 107.750 105.750  89.425  74.175  59.875  46.725
## [145]  46.225  45.150  44.250  52.325  60.275  67.725  76.100  75.500  73.800
## [154]  70.450  68.450  66.375  66.800  69.200  70.350  68.075  66.300  74.400
## [163]  83.975  97.825 110.525 111.200 110.800 107.275  98.075  90.675  82.525
## [172]  76.300  75.875  74.750  70.675  77.875  86.600  98.200 112.050 115.350
## [181] 115.150 111.225  96.750  82.475  69.150  58.275  58.800  58.700  60.050
## [190]  60.775  61.450  62.475  62.775  63.400  62.850  61.450  61.000  60.425
## [199]  60.350  57.375  55.575  54.625  54.150  58.675  61.325  63.175  64.875
## [208]  65.225  64.250  62.725  75.175  83.600  94.925 108.125 110.100 114.900
## [217] 118.550 109.475  98.475  89.175  79.500  81.775  85.025  88.500  83.575
## [226]  78.375  71.725  63.825  64.250  63.425  62.000  63.000  64.475  66.850
## [235]  70.300  72.100  72.225  72.175  85.025  97.600 110.175 121.150 118.350
## [244] 114.100 107.350  93.675  80.375  68.525  60.175  61.225  60.950  75.400
## [253]  87.250  94.300 104.675 102.200 102.975 106.475 105.625 100.775  91.425
## [262]  83.625  78.125  75.500  76.875  79.725  82.425  84.825  87.000  87.150
## [271]  85.825  82.575  77.825  74.275  72.175  71.400  72.650  71.150  69.225
## [280]  78.800  86.825  95.950 105.250 102.850  98.450  95.225  88.500

Data pemulusan pada periode ke-t selanjutnya digunakan sebagai nilai peramalan pada periode ke t+1 sehingga hasil peramalan 1 periode kedepan adalah sebagai berikut.

data.ramal<-c(NA,data.sma)
data.ramal #forecast 1 periode ke depan
##   [1]      NA      NA      NA      NA  83.500  81.200  77.600  73.975  76.475
##  [10]  80.525  82.625  88.525  88.575  85.925  85.500  90.300  96.850 105.775
##  [19] 116.800 119.275 118.425 115.950 112.800 110.350 110.850 112.025 110.950
##  [28] 108.100 103.650  85.925  70.450  56.050  43.175  43.675  43.775  44.075
##  [37]  47.925  52.775  59.000  64.875  67.050  67.450  65.650  66.700  67.375
##  [46]  69.350  71.950  71.825  71.200  69.775  79.825  90.725 103.825 119.100
##  [55] 124.050 128.375 131.150 116.375 101.500  86.400  71.000  72.000  70.975
##  [64]  69.850  80.000  92.150 107.150 123.500 128.725 130.750 127.225 108.500
##  [73]  88.150  70.325  57.600  59.675  64.275  66.750  66.625  65.975  64.225
##  [82]  62.750  63.000  62.225  60.875  60.700  60.900  62.275  64.825  67.350
##  [91]  69.750  70.550  69.050  67.125  65.175  64.425  65.425  65.150  63.675
## [100]  77.950  93.125 111.150 129.900 132.475 135.125 135.350 117.525 100.050
## [109]  81.825  63.450  63.425  62.600  61.125  64.050  67.325  71.475  76.800
## [118]  78.750  79.625  79.900  84.725  89.050  94.550 100.700 101.300 100.125
## [127]  95.700  99.200 106.225 115.175 122.800 120.975 113.900 106.025 100.200
## [136]  97.700  99.200 102.325 106.775 107.750 105.750  89.425  74.175  59.875
## [145]  46.725  46.225  45.150  44.250  52.325  60.275  67.725  76.100  75.500
## [154]  73.800  70.450  68.450  66.375  66.800  69.200  70.350  68.075  66.300
## [163]  74.400  83.975  97.825 110.525 111.200 110.800 107.275  98.075  90.675
## [172]  82.525  76.300  75.875  74.750  70.675  77.875  86.600  98.200 112.050
## [181] 115.350 115.150 111.225  96.750  82.475  69.150  58.275  58.800  58.700
## [190]  60.050  60.775  61.450  62.475  62.775  63.400  62.850  61.450  61.000
## [199]  60.425  60.350  57.375  55.575  54.625  54.150  58.675  61.325  63.175
## [208]  64.875  65.225  64.250  62.725  75.175  83.600  94.925 108.125 110.100
## [217] 114.900 118.550 109.475  98.475  89.175  79.500  81.775  85.025  88.500
## [226]  83.575  78.375  71.725  63.825  64.250  63.425  62.000  63.000  64.475
## [235]  66.850  70.300  72.100  72.225  72.175  85.025  97.600 110.175 121.150
## [244] 118.350 114.100 107.350  93.675  80.375  68.525  60.175  61.225  60.950
## [253]  75.400  87.250  94.300 104.675 102.200 102.975 106.475 105.625 100.775
## [262]  91.425  83.625  78.125  75.500  76.875  79.725  82.425  84.825  87.000
## [271]  87.150  85.825  82.575  77.825  74.275  72.175  71.400  72.650  71.150
## [280]  69.225  78.800  86.825  95.950 105.250 102.850  98.450  95.225  88.500

Selanjutnya akan dilakukan peramalan sejumlah data uji yaitu 24 periode. Pada metode SMA, hasil peramalan 24 periode ke depan akan bernilai sama dengan hasil peramalan 1 periode kedepan. Dalam hal ini akan dilakukan pengguabungan data aktual train, data hasil pemulusan dan data hasil ramalan 24 periode kedepan.

data.gab<-cbind(aktual=c(train_ma.ts,rep(NA,72)),pemulusan=c(data.sma,rep(NA,72)),ramalan=c(data.ramal,rep(data.ramal[length(data.ramal)],71)))
data.gab #forecast 72 periode ke depan
##        aktual pemulusan ramalan
##   [1,]   85.8        NA      NA
##   [2,]   85.5        NA      NA
##   [3,]   83.5        NA      NA
##   [4,]   79.2    83.500      NA
##   [5,]   76.6    81.200  83.500
##   [6,]   71.1    77.600  81.200
##   [7,]   69.0    73.975  77.600
##   [8,]   89.2    76.475  73.975
##   [9,]   92.8    80.525  76.475
##  [10,]   79.5    82.625  80.525
##  [11,]   92.6    88.525  82.625
##  [12,]   89.4    88.575  88.525
##  [13,]   82.2    85.925  88.575
##  [14,]   77.8    85.500  85.925
##  [15,]  111.8    90.300  85.500
##  [16,]  115.6    96.850  90.300
##  [17,]  117.9   105.775  96.850
##  [18,]  121.9   116.800 105.775
##  [19,]  121.7   119.275 116.800
##  [20,]  112.2   118.425 119.275
##  [21,]  108.0   115.950 118.425
##  [22,]  109.3   112.800 115.950
##  [23,]  111.9   110.350 112.800
##  [24,]  114.2   110.850 110.350
##  [25,]  112.7   112.025 110.850
##  [26,]  105.0   110.950 112.025
##  [27,]  100.5   108.100 110.950
##  [28,]   96.4   103.650 108.100
##  [29,]   41.8    85.925 103.650
##  [30,]   43.1    70.450  85.925
##  [31,]   42.9    56.050  70.450
##  [32,]   44.9    43.175  56.050
##  [33,]   43.8    43.675  43.175
##  [34,]   43.5    43.775  43.675
##  [35,]   44.1    44.075  43.775
##  [36,]   60.3    47.925  44.075
##  [37,]   63.2    52.775  47.925
##  [38,]   68.4    59.000  52.775
##  [39,]   67.6    64.875  59.000
##  [40,]   69.0    67.050  64.875
##  [41,]   64.8    67.450  67.050
##  [42,]   61.2    65.650  67.450
##  [43,]   71.8    66.700  65.650
##  [44,]   71.7    67.375  66.700
##  [45,]   72.7    69.350  67.375
##  [46,]   71.6    71.950  69.350
##  [47,]   71.3    71.825  71.950
##  [48,]   69.2    71.200  71.825
##  [49,]   67.0    69.775  71.200
##  [50,]  111.8    79.825  69.775
##  [51,]  114.9    90.725  79.825
##  [52,]  121.6   103.825  90.725
##  [53,]  128.1   119.100 103.825
##  [54,]  131.6   124.050 119.100
##  [55,]  132.2   128.375 124.050
##  [56,]  132.7   131.150 128.375
##  [57,]   69.0   116.375 131.150
##  [58,]   72.1   101.500 116.375
##  [59,]   71.8    86.400 101.500
##  [60,]   71.1    71.000  86.400
##  [61,]   73.0    72.000  71.000
##  [62,]   68.0    70.975  72.000
##  [63,]   67.3    69.850  70.975
##  [64,]  111.7    80.000  69.850
##  [65,]  121.6    92.150  80.000
##  [66,]  128.0   107.150  92.150
##  [67,]  132.7   123.500 107.150
##  [68,]  132.6   128.725 123.500
##  [69,]  129.7   130.750 128.725
##  [70,]  113.9   127.225 130.750
##  [71,]   57.8   108.500 127.225
##  [72,]   51.2    88.150 108.500
##  [73,]   58.4    70.325  88.150
##  [74,]   63.0    57.600  70.325
##  [75,]   66.1    59.675  57.600
##  [76,]   69.6    64.275  59.675
##  [77,]   68.3    66.750  64.275
##  [78,]   62.5    66.625  66.750
##  [79,]   63.5    65.975  66.625
##  [80,]   62.6    64.225  65.975
##  [81,]   62.4    62.750  64.225
##  [82,]   63.5    63.000  62.750
##  [83,]   60.4    62.225  63.000
##  [84,]   57.2    60.875  62.225
##  [85,]   61.7    60.700  60.875
##  [86,]   64.3    60.900  60.700
##  [87,]   65.9    62.275  60.900
##  [88,]   67.4    64.825  62.275
##  [89,]   71.8    67.350  64.825
##  [90,]   73.9    69.750  67.350
##  [91,]   69.1    70.550  69.750
##  [92,]   61.4    69.050  70.550
##  [93,]   64.1    67.125  69.050
##  [94,]   66.1    65.175  67.125
##  [95,]   66.1    64.425  65.175
##  [96,]   65.4    65.425  64.425
##  [97,]   63.0    65.150  65.425
##  [98,]   60.2    63.675  65.150
##  [99,]  123.2    77.950  63.675
## [100,]  126.1    93.125  77.950
## [101,]  135.1   111.150  93.125
## [102,]  135.2   129.900 111.150
## [103,]  133.5   132.475 129.900
## [104,]  136.7   135.125 132.475
## [105,]  136.0   135.350 135.125
## [106,]   63.9   117.525 135.350
## [107,]   63.6   100.050 117.525
## [108,]   63.8    81.825 100.050
## [109,]   62.5    63.450  81.825
## [110,]   63.8    63.425  63.450
## [111,]   60.3    62.600  63.425
## [112,]   57.9    61.125  62.600
## [113,]   74.2    64.050  61.125
## [114,]   76.9    67.325  64.050
## [115,]   76.9    71.475  67.325
## [116,]   79.2    76.800  71.475
## [117,]   82.0    78.750  76.800
## [118,]   80.4    79.625  78.750
## [119,]   78.0    79.900  79.625
## [120,]   98.5    84.725  79.900
## [121,]   99.3    89.050  84.725
## [122,]  102.4    94.550  89.050
## [123,]  102.6   100.700  94.550
## [124,]  100.9   101.300 100.700
## [125,]   94.6   100.125 101.300
## [126,]   84.7    95.700 100.125
## [127,]  116.6    99.200  95.700
## [128,]  129.0   106.225  99.200
## [129,]  130.4   115.175 106.225
## [130,]  115.2   122.800 115.175
## [131,]  109.3   120.975 122.800
## [132,]  100.7   113.900 120.975
## [133,]   98.9   106.025 113.900
## [134,]   91.9   100.200 106.025
## [135,]   99.3    97.700 100.200
## [136,]  106.7    99.200  97.700
## [137,]  111.4   102.325  99.200
## [138,]  109.7   106.775 102.325
## [139,]  103.2   107.750 106.775
## [140,]   98.7   105.750 107.750
## [141,]   46.1    89.425 105.750
## [142,]   48.7    74.175  89.425
## [143,]   46.0    59.875  74.175
## [144,]   46.1    46.725  59.875
## [145,]   44.1    46.225  46.725
## [146,]   44.4    45.150  46.225
## [147,]   42.4    44.250  45.150
## [148,]   78.4    52.325  44.250
## [149,]   75.9    60.275  52.325
## [150,]   74.2    67.725  60.275
## [151,]   75.9    76.100  67.725
## [152,]   76.0    75.500  76.100
## [153,]   69.1    73.800  75.500
## [154,]   60.8    70.450  73.800
## [155,]   67.9    68.450  70.450
## [156,]   67.7    66.375  68.450
## [157,]   70.8    66.800  66.375
## [158,]   70.4    69.200  66.800
## [159,]   72.5    70.350  69.200
## [160,]   58.6    68.075  70.350
## [161,]   63.7    66.300  68.075
## [162,]  102.8    74.400  66.300
## [163,]  110.8    83.975  74.400
## [164,]  114.0    97.825  83.975
## [165,]  114.5   110.525  97.825
## [166,]  105.5   111.200 110.525
## [167,]  109.2   110.800 111.200
## [168,]   99.9   107.275 110.800
## [169,]   77.7    98.075 107.275
## [170,]   75.9    90.675  98.075
## [171,]   76.6    82.525  90.675
## [172,]   75.0    76.300  82.525
## [173,]   76.0    75.875  76.300
## [174,]   71.4    74.750  75.875
## [175,]   60.3    70.675  74.750
## [176,]  103.8    77.875  70.675
## [177,]  110.9    86.600  77.875
## [178,]  117.8    98.200  86.600
## [179,]  115.7   112.050  98.200
## [180,]  117.0   115.350 112.050
## [181,]  110.1   115.150 115.350
## [182,]  102.1   111.225 115.150
## [183,]   57.8    96.750 111.225
## [184,]   59.9    82.475  96.750
## [185,]   56.8    69.150  82.475
## [186,]   58.6    58.275  69.150
## [187,]   59.9    58.800  58.275
## [188,]   59.5    58.700  58.800
## [189,]   62.2    60.050  58.700
## [190,]   61.5    60.775  60.050
## [191,]   62.6    61.450  60.775
## [192,]   63.6    62.475  61.450
## [193,]   63.4    62.775  62.475
## [194,]   64.0    63.400  62.775
## [195,]   60.4    62.850  63.400
## [196,]   58.0    61.450  62.850
## [197,]   61.6    61.000  61.450
## [198,]   61.7    60.425  61.000
## [199,]   60.1    60.350  60.425
## [200,]   46.1    57.375  60.350
## [201,]   54.4    55.575  57.375
## [202,]   57.9    54.625  55.575
## [203,]   58.2    54.150  54.625
## [204,]   64.2    58.675  54.150
## [205,]   65.0    61.325  58.675
## [206,]   65.3    63.175  61.325
## [207,]   65.0    64.875  63.175
## [208,]   65.6    65.225  64.875
## [209,]   61.1    64.250  65.225
## [210,]   59.2    62.725  64.250
## [211,]  114.8    75.175  62.725
## [212,]   99.3    83.600  75.175
## [213,]  106.4    94.925  83.600
## [214,]  112.0   108.125  94.925
## [215,]  122.7   110.100 108.125
## [216,]  118.5   114.900 110.100
## [217,]  121.0   118.550 114.900
## [218,]   75.7   109.475 118.550
## [219,]   78.7    98.475 109.475
## [220,]   81.3    89.175  98.475
## [221,]   82.3    79.500  89.175
## [222,]   84.8    81.775  79.500
## [223,]   91.7    85.025  81.775
## [224,]   95.2    88.500  85.025
## [225,]   62.6    83.575  88.500
## [226,]   64.0    78.375  83.575
## [227,]   65.1    71.725  78.375
## [228,]   63.6    63.825  71.725
## [229,]   64.3    64.250  63.825
## [230,]   60.7    63.425  64.250
## [231,]   59.4    62.000  63.425
## [232,]   67.6    63.000  62.000
## [233,]   70.2    64.475  63.000
## [234,]   70.2    66.850  64.475
## [235,]   73.2    70.300  66.850
## [236,]   74.8    72.100  70.300
## [237,]   70.7    72.225  72.100
## [238,]   70.0    72.175  72.225
## [239,]  124.6    85.025  72.175
## [240,]  125.1    97.600  85.025
## [241,]  121.0   110.175  97.600
## [242,]  113.9   121.150 110.175
## [243,]  113.4   118.350 121.150
## [244,]  108.1   114.100 118.350
## [245,]   94.0   107.350 114.100
## [246,]   59.2    93.675 107.350
## [247,]   60.2    80.375  93.675
## [248,]   60.7    68.525  80.375
## [249,]   60.6    60.175  68.525
## [250,]   63.4    61.225  60.175
## [251,]   59.1    60.950  61.225
## [252,]  118.5    75.400  60.950
## [253,]  108.0    87.250  75.400
## [254,]   91.6    94.300  87.250
## [255,]  100.6   104.675  94.300
## [256,]  108.6   102.200 104.675
## [257,]  111.1   102.975 102.200
## [258,]  105.6   106.475 102.975
## [259,]   97.2   105.625 106.475
## [260,]   89.2   100.775 105.625
## [261,]   73.7    91.425 100.775
## [262,]   74.4    83.625  91.425
## [263,]   75.2    78.125  83.625
## [264,]   78.7    75.500  78.125
## [265,]   79.2    76.875  75.500
## [266,]   85.8    79.725  76.875
## [267,]   86.0    82.425  79.725
## [268,]   88.3    84.825  82.425
## [269,]   87.9    87.000  84.825
## [270,]   86.4    87.150  87.000
## [271,]   80.7    85.825  87.150
## [272,]   75.3    82.575  85.825
## [273,]   68.9    77.825  82.575
## [274,]   72.2    74.275  77.825
## [275,]   72.3    72.175  74.275
## [276,]   72.2    71.400  72.175
## [277,]   73.9    72.650  71.400
## [278,]   66.2    71.150  72.650
## [279,]   64.6    69.225  71.150
## [280,]  110.5    78.800  69.225
## [281,]  106.0    86.825  78.800
## [282,]  102.7    95.950  86.825
## [283,]  101.8   105.250  95.950
## [284,]  100.9   102.850 105.250
## [285,]   88.4    98.450 102.850
## [286,]   89.8    95.225  98.450
## [287,]   74.9    88.500  95.225
## [288,]     NA        NA  88.500
## [289,]     NA        NA  88.500
## [290,]     NA        NA  88.500
## [291,]     NA        NA  88.500
## [292,]     NA        NA  88.500
## [293,]     NA        NA  88.500
## [294,]     NA        NA  88.500
## [295,]     NA        NA  88.500
## [296,]     NA        NA  88.500
## [297,]     NA        NA  88.500
## [298,]     NA        NA  88.500
## [299,]     NA        NA  88.500
## [300,]     NA        NA  88.500
## [301,]     NA        NA  88.500
## [302,]     NA        NA  88.500
## [303,]     NA        NA  88.500
## [304,]     NA        NA  88.500
## [305,]     NA        NA  88.500
## [306,]     NA        NA  88.500
## [307,]     NA        NA  88.500
## [308,]     NA        NA  88.500
## [309,]     NA        NA  88.500
## [310,]     NA        NA  88.500
## [311,]     NA        NA  88.500
## [312,]     NA        NA  88.500
## [313,]     NA        NA  88.500
## [314,]     NA        NA  88.500
## [315,]     NA        NA  88.500
## [316,]     NA        NA  88.500
## [317,]     NA        NA  88.500
## [318,]     NA        NA  88.500
## [319,]     NA        NA  88.500
## [320,]     NA        NA  88.500
## [321,]     NA        NA  88.500
## [322,]     NA        NA  88.500
## [323,]     NA        NA  88.500
## [324,]     NA        NA  88.500
## [325,]     NA        NA  88.500
## [326,]     NA        NA  88.500
## [327,]     NA        NA  88.500
## [328,]     NA        NA  88.500
## [329,]     NA        NA  88.500
## [330,]     NA        NA  88.500
## [331,]     NA        NA  88.500
## [332,]     NA        NA  88.500
## [333,]     NA        NA  88.500
## [334,]     NA        NA  88.500
## [335,]     NA        NA  88.500
## [336,]     NA        NA  88.500
## [337,]     NA        NA  88.500
## [338,]     NA        NA  88.500
## [339,]     NA        NA  88.500
## [340,]     NA        NA  88.500
## [341,]     NA        NA  88.500
## [342,]     NA        NA  88.500
## [343,]     NA        NA  88.500
## [344,]     NA        NA  88.500
## [345,]     NA        NA  88.500
## [346,]     NA        NA  88.500
## [347,]     NA        NA  88.500
## [348,]     NA        NA  88.500
## [349,]     NA        NA  88.500
## [350,]     NA        NA  88.500
## [351,]     NA        NA  88.500
## [352,]     NA        NA  88.500
## [353,]     NA        NA  88.500
## [354,]     NA        NA  88.500
## [355,]     NA        NA  88.500
## [356,]     NA        NA  88.500
## [357,]     NA        NA  88.500
## [358,]     NA        NA  88.500
## [359,]     NA        NA  88.500

Adapun plot data deret waktu dari hasil peramalan yang dilakukan adalah sebagai berikut.

ts.plot(data.ts, xlab="Time Period", ylab="Power Consumed", main= "SMA N=4 Data Power Consumption New Delhi")
points(data.ts)
lines(data.gab[,2],col="green",lwd=2)
lines(data.gab[,3],col="red",lwd=2)
legend("topleft",c("data aktual","data pemulusan","data peramalan"), lty=8, col=c("black","green","red"), cex=0.5)

Selanjutnya perhitungan akurasi dilakukan dengan ukuran akurasi Sum Squares Error (SSE), Mean Square Error (MSE) dan Mean Absolute Percentage Error (MAPE). Perhitungan akurasi dilakukan baik pada data latih maupun pada data uji.

#Menghitung nilai keakuratan data latih
error_train.sma = train_ma.ts-data.ramal[1:length(train_ma.ts)]
SSE_train.sma = sum(error_train.sma[5:length(train_ma.ts)]^2)
MSE_train.sma = mean(error_train.sma[5:length(train_ma.ts)]^2)
MAPE_train.sma = mean(abs((error_train.sma[5:length(train_ma.ts)]/train_ma.ts[5:length(train_ma.ts)])*100))

akurasi_train.sma <- matrix(c(SSE_train.sma, MSE_train.sma, MAPE_train.sma))
row.names(akurasi_train.sma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_train.sma) <- c("Akurasi m = 4")
akurasi_train.sma
##      Akurasi m = 4
## SSE    113437.9662
## MSE       400.8409
## MAPE       17.2256

Dalam hal ini nilai MAPE data latih pada metode pemulusan SMA kurang dari 20%, yaitu sebesar 17,2256%, nilai ini dapat dikategorikan sebagai nilai akurasi yang baik. Selanjutnya dilakukan perhitungan nilai MAPE data uji pada metode pemulusan SMA.

#Menghitung nilai keakuratan data uji
error_test.sma = test_ma.ts-data.gab[288:359,3]
SSE_test.sma = sum(error_test.sma^2)
MSE_test.sma = mean(error_test.sma^2)
MAPE_test.sma = mean(abs((error_test.sma/test_ma.ts*100)))

akurasi_test.sma <- matrix(c(SSE_test.sma, MSE_test.sma, MAPE_test.sma))
row.names(akurasi_test.sma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_test.sma) <- c("Akurasi m = 4")
akurasi_test.sma
##      Akurasi m = 4
## SSE    52868.27000
## MSE      734.28153
## MAPE      33.63032

Perhitungan akurasi menggunakan data latih menghasilkan nilai MAPE sebesar 33,63% sehingga nilai akurasi ini dapat dikategorikan sebagai cukup baik (layak).

Single Exponential Smoothing & Double Exponential Smoothing

Metode Exponential Smoothing adalah metode pemulusan dengan melakukan pembobotan menurun secara eksponensial. Nilai yang lebih baru diberi bobot yang lebih besar dari nilai terdahulu. Terdapat satu atau lebih parameter pemulusan yang ditentukan secara eksplisit, dan hasil pemilihan parameter tersebut akan menentukan bobot yang akan diberikan pada nilai pengamatan. Ada dua macam model, yaitu model tunggal dan ganda.

Pembagian Data

Pembagian data latih dan data uji dilakukan dengan perbandingan 80% data latih dan 20% data uji.

#membagi training dan testing
training<-data[1:287,]
testing<-data[288:359,]
train.ts <- ts(testing$PowerConsumed)
test.ts <- ts(testing$PowerConsumed)

Eksplorasi

Eksplorasi dilakukan dengan membuat plot data deret waktu untuk keseluruhan data, data latih, dan data uji.

#eksplorasi data
plot(data.ts, col="black",main="Plot semua data")
points(data.ts)

plot(train.ts, col="red",main="Plot data latih")
points(train.ts)

plot(test.ts, col="blue",main="Plot data uji")
points(test.ts)

Eksplorasi data juga dapat dilakukan menggunakan package ggplot2 .

#Eksplorasi dengan GGPLOT
library(ggplot2)
ggplot() + 
  geom_line(data = training, aes(x = Waktu, y = PowerConsumed, col = "Data Latih")) +
  geom_line(data = testing, aes(x = Waktu, y = PowerConsumed, col = "Data Uji")) +
  labs(x = "Periode Waktu", y = "Power Comsumed", color = "Legend") +
  scale_colour_manual(name="Keterangan:", breaks = c("Data Latih", "Data Uji"),
                      values = c("blue", "red")) + 
  theme_bw() + theme(legend.position = "bottom",
                     plot.caption = element_text(hjust=0.5, size=12))

SES

Single Exponential Smoothing merupakan metode pemulusan yang tepat digunakan untuk data dengan pola stasioner atau konstan.

Nilai pemulusan pada periode ke-t didapat dari persamaan:

\[ \tilde{y}_T=\lambda y_t+(1-\lambda)\tilde{y}_{T-1} \]

Nilai parameter \(\lambda\) adalah nilai antara 0 dan 1.

Nilai pemulusan periode ke-t bertindak sebagai nilai ramalan pada periode ke-\((T+\tau)\).

\[ \tilde{y}_{T+\tau}(T)=\tilde{y}_T \]

Pemulusan dengan metode SES dapat dilakukan dengan dua fungsi dari packages berbeda, yaitu (1) fungsi ses() dari packages forecast dan (2) fungsi HoltWinters dari packages stats .

#Cara 1 (fungsi ses)
ses.1<- ses(train.ts, h = 72, alpha = 0.2)
plot(ses.1)

ses.1
##     Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
##  73       96.97275 67.94058 126.0049 52.571884 141.3736
##  74       96.97275 67.36563 126.5799 51.692573 142.2529
##  75       96.97275 66.80164 127.1439 50.830016 143.1155
##  76       96.97275 66.24799 127.6975 49.983290 143.9622
##  77       96.97275 65.70415 128.2413 49.151554 144.7939
##  78       96.97275 65.16960 128.7759 48.334038 145.6115
##  79       96.97275 64.64390 129.3016 47.530038 146.4155
##  80       96.97275 64.12660 129.8189 46.738904 147.2066
##  81       96.97275 63.61733 130.3282 45.960039 147.9855
##  82       96.97275 63.11572 130.8298 45.192887 148.7526
##  83       96.97275 62.62143 131.3241 44.436937 149.5086
##  84       96.97275 62.13415 131.8113 43.691711 150.2538
##  85       96.97275 61.65359 132.2919 42.956765 150.9887
##  86       96.97275 61.17949 132.7660 42.231686 151.7138
##  87       96.97275 60.71159 133.2339 41.516086 152.4294
##  88       96.97275 60.24964 133.6959 40.809604 153.1359
##  89       96.97275 59.79344 134.1521 40.111898 153.8336
##  90       96.97275 59.34276 134.6027 39.422650 154.5228
##  91       96.97275 58.89742 135.0481 38.741561 155.2039
##  92       96.97275 58.45723 135.4883 38.068345 155.8771
##  93       96.97275 58.02201 135.9235 37.402738 156.5428
##  94       96.97275 57.59160 136.3539 36.744486 157.2010
##  95       96.97275 57.16585 136.7796 36.093350 157.8521
##  96       96.97275 56.74460 137.2009 35.449106 158.4964
##  97       96.97275 56.32772 137.6178 34.811538 159.1340
##  98       96.97275 55.91507 138.0304 34.180444 159.7650
##  99       96.97275 55.50652 138.4390 33.555629 160.3899
## 100       96.97275 55.10196 138.8435 32.936911 161.0086
## 101       96.97275 54.70128 139.2442 32.324114 161.6214
## 102       96.97275 54.30435 139.6411 31.717071 162.2284
## 103       96.97275 53.91109 140.0344 31.115624 162.8299
## 104       96.97275 53.52138 140.4241 30.519620 163.4259
## 105       96.97275 53.13514 140.8104 29.928914 164.0166
## 106       96.97275 52.75227 141.1932 29.343367 164.6021
## 107       96.97275 52.37269 141.5728 28.762846 165.1826
## 108       96.97275 51.99631 141.9492 28.187225 165.7583
## 109       96.97275 51.62306 142.3224 27.616381 166.3291
## 110       96.97275 51.25285 142.6926 27.050197 166.8953
## 111       96.97275 50.88562 143.0599 26.488561 167.4569
## 112       96.97275 50.52128 143.4242 25.931366 168.0141
## 113       96.97275 50.15979 143.7857 25.378506 168.5670
## 114       96.97275 49.80106 144.1444 24.829883 169.1156
## 115       96.97275 49.44505 144.5004 24.285401 169.6601
## 116       96.97275 49.09168 144.8538 23.744967 170.2005
## 117       96.97275 48.74089 145.2046 23.208493 170.7370
## 118       96.97275 48.39264 145.5528 22.675892 171.2696
## 119       96.97275 48.04687 145.8986 22.147082 171.7984
## 120       96.97275 47.70353 146.2420 21.621983 172.3235
## 121       96.97275 47.36256 146.5829 21.100518 172.8450
## 122       96.97275 47.02392 146.9216 20.582613 173.3629
## 123       96.97275 46.68756 147.2579 20.068196 173.8773
## 124       96.97275 46.35344 147.5921 19.557196 174.3883
## 125       96.97275 46.02151 147.9240 19.049548 174.8959
## 126       96.97275 45.69172 148.2538 18.545185 175.4003
## 127       96.97275 45.36404 148.5815 18.044046 175.9014
## 128       96.97275 45.03843 148.9071 17.546068 176.3994
## 129       96.97275 44.71485 149.2306 17.051193 176.8943
## 130       96.97275 44.39326 149.5522 16.559363 177.3861
## 131       96.97275 44.07363 149.8719 16.070524 177.8750
## 132       96.97275 43.75591 150.1896 15.584620 178.3609
## 133       96.97275 43.44008 150.5054 15.101600 178.8439
## 134       96.97275 43.12610 150.8194 14.621413 179.3241
## 135       96.97275 42.81395 151.1315 14.144010 179.8015
## 136       96.97275 42.50358 151.4419 13.669343 180.2762
## 137       96.97275 42.19497 151.7505 13.197366 180.7481
## 138       96.97275 41.88809 152.0574 12.728032 181.2175
## 139       96.97275 41.58291 152.3626 12.261299 181.6842
## 140       96.97275 41.27940 152.6661 11.797123 182.1484
## 141       96.97275 40.97754 152.9680 11.335463 182.6100
## 142       96.97275 40.67729 153.2682 10.876279 183.0692
## 143       96.97275 40.37864 153.5669 10.419530 183.5260
## 144       96.97275 40.08156 153.8639  9.965179 183.9803
ses.2<- ses(train.ts, h = 72, alpha = 0.7)
plot(ses.2)

ses.2
##     Point Forecast      Lo 80    Hi 80        Lo 95    Hi 95
##  73       130.8689 109.908132 151.8296  98.81218603 162.9256
##  74       130.8689 105.283028 156.4547  91.73869994 169.9990
##  75       130.8689 101.374496 160.3632  85.76111640 175.9766
##  76       130.8689  97.926483 163.8113  80.48783523 181.2499
##  77       130.8689  94.806651 166.9311  75.71646393 186.0213
##  78       130.8689  91.936025 169.8017  71.32622034 190.4115
##  79       130.8689  89.262990 172.4748  67.23816701 194.4996
##  80       130.8689  86.751617 174.9861  63.39735305 198.3404
##  81       130.8689  84.375701 177.3620  59.76370257 201.9740
##  82       130.8689  82.115434 179.6223  56.30692211 205.4308
##  83       130.8689  79.955411 181.7823  53.00345206 208.7343
##  84       130.8689  77.883371 183.8544  49.83454055 211.9032
##  85       130.8689  75.889365 185.8484  46.78497268 214.9528
##  86       130.8689  73.965191 187.7726  43.84220151 217.8955
##  87       130.8689  72.103987 189.6338  40.99573571 220.7420
##  88       130.8689  70.299948 191.4378  38.23669682 223.5010
##  89       130.8689  68.548111 193.1896  35.55749215 226.1803
##  90       130.8689  66.844188 194.8936  32.95156821 228.7862
##  91       130.8689  65.184453 196.5533  30.41322192 231.3245
##  92       130.8689  63.565635 198.1721  27.93745365 233.8003
##  93       130.8689  61.984850 199.7529  25.51985143 236.2179
##  94       130.8689  60.439537 201.2982  23.15649858 238.5812
##  95       130.8689  58.927409 202.8103  20.84389921 240.8938
##  96       130.8689  57.446417 204.2913  18.57891746 243.1588
##  97       130.8689  55.994713 205.7430  16.35872773 245.3790
##  98       130.8689  54.570625 207.1671  14.18077324 247.5570
##  99       130.8689  53.172635 208.5651  12.04273159 249.6950
## 100       130.8689  51.799358 209.9384   9.94248573 251.7953
## 101       130.8689  50.449528 211.2882   7.87809939 253.8596
## 102       130.8689  49.121985 212.6158   5.84779618 255.8899
## 103       130.8689  47.815658 213.9221   3.84994171 257.8878
## 104       130.8689  46.529562 215.2082   1.88302819 259.8547
## 105       130.8689  45.262786 216.4750  -0.05433891 261.7921
## 106       130.8689  44.014484 217.7233  -1.96345240 263.7012
## 107       130.8689  42.783870 218.9539  -3.84551349 265.5833
## 108       130.8689  41.570214 220.1675  -5.70164059 267.4394
## 109       130.8689  40.372833 221.3649  -7.53287713 269.2706
## 110       130.8689  39.191089 222.5467  -9.34019837 271.0779
## 111       130.8689  38.024385 223.7134 -11.12451751 272.8623
## 112       130.8689  36.872162 224.8656 -12.88669108 274.6244
## 113       130.8689  35.733892 226.0039 -14.62752372 276.3653
## 114       130.8689  34.609082 227.1287 -16.34777251 278.0855
## 115       130.8689  33.497265 228.2405 -18.04815077 279.7859
## 116       130.8689  32.398000 229.3397 -19.72933158 281.4671
## 117       130.8689  31.310871 230.4269 -21.39195085 283.1297
## 118       130.8689  30.235486 231.5023 -23.03661012 284.7744
## 119       130.8689  29.171472 232.5663 -24.66387914 286.4016
## 120       130.8689  28.118476 233.6193 -26.27429817 288.0120
## 121       130.8689  27.076162 234.6616 -27.86838003 289.6061
## 122       130.8689  26.044211 235.6935 -29.44661207 291.1844
## 123       130.8689  25.022321 236.7154 -31.00945788 292.7472
## 124       130.8689  24.010203 237.7275 -32.55735887 294.2951
## 125       130.8689  23.007582 238.7302 -34.09073575 295.8285
## 126       130.8689  22.014195 239.7235 -35.60998984 297.3477
## 127       130.8689  21.029792 240.7080 -37.11550433 298.8532
## 128       130.8689  20.054134 241.6836 -38.60764538 300.3454
## 129       130.8689  19.086991 242.6508 -40.08676317 301.8245
## 130       130.8689  18.128144 243.6096 -41.55319285 303.2909
## 131       130.8689  17.177383 244.5604 -43.00725546 304.7450
## 132       130.8689  16.234508 245.5032 -44.44925870 306.1870
## 133       130.8689  15.299325 246.4384 -45.87949773 307.6172
## 134       130.8689  14.371649 247.3661 -47.29825588 309.0360
## 135       130.8689  13.451302 248.2864 -48.70580524 310.4435
## 136       130.8689  12.538113 249.1996 -50.10240738 311.8402
## 137       130.8689  11.631917 250.1058 -51.48831379 313.2261
## 138       130.8689  10.732557 251.0052 -52.86376653 314.6015
## 139       130.8689   9.839880 251.8979 -54.22899864 315.9667
## 140       130.8689   8.953739 252.7840 -55.58423461 317.3220
## 141       130.8689   8.073992 253.6638 -56.92969088 318.6674
## 142       130.8689   7.200504 254.5372 -58.26557613 320.0033
## 143       130.8689   6.333142 255.4046 -59.59209177 321.3298
## 144       130.8689   5.471779 256.2660 -60.90943223 322.6472

Untuk mendapatkan gambar hasil pemulusan pada data latih dengan fungsi ses() , perlu digunakan fungsi autoplot() dan autolayer() dari library packages ggplot2 .

autoplot(ses.1) +
  autolayer(fitted(ses.1), series="Fitted") +
  ylab("Power Consumed") + xlab("Periode")

Pada fungsi ses() , terdapat beberapa argumen yang umum digunakan, yaitu nilia y , gamma , beta , alpha , dan h .

Nilai y adalah nilai data deret waktu, gamma adalah parameter pemulusan untuk komponen musiman, beta adalah parameter pemulusan untuk tren, dan alpha adalah parameter pemulusan untuk stasioner, serta h adalah banyaknya periode yang akan diramalkan.

Kasus di atas merupakan contoh inisialisasi nilai parameter \(\lambda\) dengan nilai alpha 0,2 dan 0,7 dan banyak periode data yang akan diramalkan adalah sebanyak 72 periode. Selanjutnya akan digunakan fungsi HoltWinters() dengan nilai inisialisasi parameter dan panjang periode peramalan yang sama dengan fungsi ses() .

#Cara 2 (fungsi Holtwinter)
ses.1<- HoltWinters(train.ts, gamma = FALSE, beta = FALSE, alpha = 0.2)
plot(ses.1)

#ramalan
ramalan.1<- forecast(ses.1, h=72)
ramalan.1
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
##  73       96.97275 67.96219 125.9833 52.60493 141.3406
##  74       96.97275 67.38767 126.5578 51.72627 142.2192
##  75       96.97275 66.82409 127.1214 50.86436 143.0811
##  76       96.97275 66.27086 127.6746 50.01826 143.9272
##  77       96.97275 65.72742 128.2181 49.18714 144.7583
##  78       96.97275 65.19327 128.7522 48.37024 145.5753
##  79       96.97275 64.66796 129.2775 47.56684 146.3787
##  80       96.97275 64.15105 129.7944 46.77629 147.1692
##  81       96.97275 63.64215 130.3033 45.99800 147.9475
##  82       96.97275 63.14091 130.8046 45.23142 148.7141
##  83       96.97275 62.64699 131.2985 44.47604 149.4695
##  84       96.97275 62.16008 131.7854 43.73137 150.2141
##  85       96.97275 61.67988 132.2656 42.99697 150.9485
##  86       96.97275 61.20613 132.7394 42.27243 151.6731
##  87       96.97275 60.73857 133.2069 41.55736 152.3881
##  88       96.97275 60.27697 133.6685 40.85140 153.0941
##  89       96.97275 59.82111 134.1244 40.15422 153.7913
##  90       96.97275 59.37077 134.5747 39.46548 154.4800
##  91       96.97275 58.92576 135.0197 38.78490 155.1606
##  92       96.97275 58.48589 135.4596 38.11219 155.8333
##  93       96.97275 58.05100 135.8945 37.44707 156.4984
##  94       96.97275 57.62091 136.3246 36.78931 157.1562
##  95       96.97275 57.19548 136.7500 36.13866 157.8068
##  96       96.97275 56.77454 137.1710 35.49490 158.4506
##  97       96.97275 56.35797 137.5875 34.85780 159.0877
##  98       96.97275 55.94562 137.9999 34.22718 159.7183
##  99       96.97275 55.53738 138.4081 33.60283 160.3427
## 100       96.97275 55.13313 138.8124 32.98457 160.9609
## 101       96.97275 54.73274 139.2128 32.37223 161.5733
## 102       96.97275 54.33611 139.6094 31.76564 162.1799
## 103       96.97275 53.94314 140.0024 31.16464 162.7809
## 104       96.97275 53.55372 140.3918 30.56908 163.3764
## 105       96.97275 53.16777 140.7777 29.97881 163.9667
## 106       96.97275 52.78518 141.1603 29.39370 164.5518
## 107       96.97275 52.40588 141.5396 28.81361 165.1319
## 108       96.97275 52.02979 141.9157 28.23842 165.7071
## 109       96.97275 51.65681 142.2887 27.66800 166.2775
## 110       96.97275 51.28688 142.6586 27.10224 166.8433
## 111       96.97275 50.91992 143.0256 26.54102 167.4045
## 112       96.97275 50.55586 143.3896 25.98424 167.9613
## 113       96.97275 50.19463 143.7509 25.43179 168.5137
## 114       96.97275 49.83617 144.1093 24.88358 169.0619
## 115       96.97275 49.48042 144.4651 24.33950 169.6060
## 116       96.97275 49.12731 144.8182 23.79947 170.1460
## 117       96.97275 48.77679 145.1687 23.26339 170.6821
## 118       96.97275 48.42880 145.5167 22.73119 171.2143
## 119       96.97275 48.08329 145.8622 22.20277 171.7427
## 120       96.97275 47.74020 146.2053 21.67806 172.2674
## 121       96.97275 47.39949 146.5460 21.15699 172.7885
## 122       96.97275 47.06110 146.8844 20.63947 173.3060
## 123       96.97275 46.72499 147.2205 20.12543 173.8201
## 124       96.97275 46.39111 147.5544 19.61481 174.3307
## 125       96.97275 46.05943 147.8861 19.10754 174.8379
## 126       96.97275 45.72989 148.2156 18.60356 175.3419
## 127       96.97275 45.40245 148.5430 18.10279 175.8427
## 128       96.97275 45.07709 148.8684 17.60518 176.3403
## 129       96.97275 44.75374 149.1917 17.11067 176.8348
## 130       96.97275 44.43239 149.5131 16.61921 177.3263
## 131       96.97275 44.11300 149.8325 16.13074 177.8148
## 132       96.97275 43.79552 150.1500 15.64519 178.3003
## 133       96.97275 43.47992 150.4656 15.16253 178.7830
## 134       96.97275 43.16618 150.7793 14.68270 179.2628
## 135       96.97275 42.85425 151.0912 14.20566 179.7398
## 136       96.97275 42.54412 151.4014 13.73134 180.2141
## 137       96.97275 42.23574 151.7098 13.25972 180.6858
## 138       96.97275 41.92909 152.0164 12.79073 181.1548
## 139       96.97275 41.62413 152.3214 12.32435 181.6211
## 140       96.97275 41.32085 152.6246 11.86052 182.0850
## 141       96.97275 41.01921 152.9263 11.39920 182.5463
## 142       96.97275 40.71919 153.2263 10.94036 183.0051
## 143       96.97275 40.42076 153.5247 10.48395 183.4615
## 144       96.97275 40.12390 153.8216 10.02994 183.9156
ses.2<- HoltWinters(train.ts, gamma = FALSE, beta = FALSE, alpha = 0.7)
plot(ses.2)

#ramalan
ramalan.2<- forecast(ses.2, h=72)
ramalan.2
##     Point Forecast      Lo 80    Hi 80       Lo 95    Hi 95
##  73       130.8689 109.958545 151.7792  98.8892857 162.8485
##  74       130.8689 105.344564 156.3932  91.8328121 169.9049
##  75       130.8689 101.445433 160.2923  85.8696053 175.8681
##  76       130.8689  98.005713 163.7320  80.6090069 181.1287
##  77       130.8689  94.893384 166.8444  75.8491112 185.8886
##  78       130.8689  92.029662 169.7081  71.4694266 190.2683
##  79       130.8689  89.363057 172.3747  67.3912055 194.3465
##  80       130.8689  86.857724 174.8800  63.5596291 198.1781
##  81       130.8689  84.487522 177.2502  59.9347179 201.8030
##  82       130.8689  82.232691 179.5051  56.4862514 205.2515
##  83       130.8689  80.077863 181.6599  53.1907265 208.5470
##  84       130.8689  78.010806 183.7269  50.0294366 211.7083
##  85       130.8689  76.021597 185.7161  46.9872033 214.7505
##  86       130.8689  74.102050 187.6357  44.0515098 217.6862
##  87       130.8689  72.245323 189.4924  41.2118900 220.5259
##  88       130.8689  70.445623 191.2921  38.4594869 223.2783
##  89       130.8689  68.697998 193.0397  35.7867260 225.9510
##  90       130.8689  66.998175 194.7396  33.1870696 228.5507
##  91       130.8689  65.342431 196.3953  30.6548283 231.0829
##  92       130.8689  63.727507 198.0102  28.1850145 233.5527
##  93       130.8689  62.150523 199.5872  25.7732268 235.9645
##  94       130.8689  60.608927 201.1288  23.4155581 238.3222
##  95       130.8689  59.100436 202.6373  21.1085208 240.6292
##  96       130.8689  57.623006 204.1147  18.8489865 242.8888
##  97       130.8689  56.174793 205.5630  16.6341366 245.1036
##  98       130.8689  54.754131 206.9836  14.4614203 247.2763
##  99       130.8689  53.359503 208.3782  12.3285209 249.4092
## 100       130.8689  51.989529 209.7482  10.2333263 251.5044
## 101       130.8689  50.642945 211.0948   8.1739051 253.5638
## 102       130.8689  49.318594 212.4192   6.1484849 255.5893
## 103       130.8689  48.015409 213.7223   4.1554355 257.5823
## 104       130.8689  46.732407 215.0053   2.1932526 259.5445
## 105       130.8689  45.468677 216.2691   0.2605451 261.4772
## 106       130.8689  44.223377 217.5144  -1.6439768 263.3817
## 107       130.8689  42.995724 218.7420  -3.5215113 265.2593
## 108       130.8689  41.784986 219.9528  -5.3731742 267.1109
## 109       130.8689  40.590485 221.1473  -7.2000064 268.9378
## 110       130.8689  39.411583 222.3262  -9.0029809 270.7407
## 111       130.8689  38.247686 223.4901 -10.7830086 272.5208
## 112       130.8689  37.098234 224.6395 -12.5409439 274.2787
## 113       130.8689  35.962702 225.7750 -14.2775897 276.0153
## 114       130.8689  34.840597 226.8971 -15.9937011 277.7314
## 115       130.8689  33.731454 228.0063 -17.6899898 279.4277
## 116       130.8689  32.634832 229.1029 -19.3671272 281.1049
## 117       130.8689  31.550319 230.1874 -21.0257477 282.7635
## 118       130.8689  30.477520 231.2602 -22.6664513 284.4042
## 119       130.8689  29.416065 232.3217 -24.2898066 286.0276
## 120       130.8689  28.365601 233.3721 -25.8963524 287.6341
## 121       130.8689  27.325794 234.4120 -27.4866003 289.2243
## 122       130.8689  26.296326 235.4414 -29.0610366 290.7988
## 123       130.8689  25.276893 236.4609 -30.6201236 292.3579
## 124       130.8689  24.267210 237.4705 -32.1643017 293.9020
## 125       130.8689  23.267000 238.4707 -33.6939906 295.4317
## 126       130.8689  22.276002 239.4617 -35.2095908 296.9473
## 127       130.8689  21.293967 240.4438 -36.7114843 298.4492
## 128       130.8689  20.320655 241.4171 -38.2000366 299.9378
## 129       130.8689  19.355838 242.3819 -39.6755970 301.4133
## 130       130.8689  18.399297 243.3384 -41.1384998 302.8762
## 131       130.8689  17.450823 244.2869 -42.5890652 304.3268
## 132       130.8689  16.510216 245.2275 -44.0276003 305.7653
## 133       130.8689  15.577282 246.1605 -45.4543994 307.1921
## 134       130.8689  14.651837 247.0859 -46.8697453 308.6075
## 135       130.8689  13.733703 248.0040 -48.2739094 310.0117
## 136       130.8689  12.822711 248.9150 -49.6671525 311.4049
## 137       130.8689  11.918695 249.8190 -51.0497257 312.7875
## 138       130.8689  11.021498 250.7162 -52.4218703 314.1596
## 139       130.8689  10.130967 251.6068 -53.7838189 315.5216
## 140       130.8689   9.246957 252.4908 -55.1357954 316.8735
## 141       130.8689   8.369327 253.3684 -56.4780157 318.2158
## 142       130.8689   7.497939 254.2398 -57.8106880 319.5484
## 143       130.8689   6.632663 255.1051 -59.1340132 320.8718
## 144       130.8689   5.773372 255.9644 -60.4481854 322.1859

Fungsi HoltWinters memiliki argumen yang sama dengan fungsi ses() . Argumen-argumen kedua fungsi dapat dilihat lebih lanjut dengan ?ses() atau ?HoltWinters .

Nilai parameter \(\alpha\) dari kedua fungsi dapat dioptimalkan menyesuaikan dari error-nya paling minimumnya. Caranya adalah dengan membuat parameter \(\alpha =\) NULL .

#SES
ses.opt <- ses(train.ts, h = 72, alpha = NULL)
plot(ses.opt)

ses.opt
##     Point Forecast       Lo 80    Hi 80        Lo 95    Hi 95
##  73       134.8992 115.0370872 154.7613  104.5227203 165.2757
##  74       134.8992 106.8113374 162.9871   91.9425217 177.8559
##  75       134.8992 100.4993087 169.2991   82.2891068 187.5093
##  76       134.8992  95.1779587 174.6204   74.1508042 195.6476
##  77       134.8992  90.4897246 179.3087   66.9807690 202.8176
##  78       134.8992  86.2512196 183.5472   60.4985350 209.2999
##  79       134.8992  82.3535010 187.4449   54.5374887 215.2609
##  80       134.8992  78.7255854 191.0728   48.9890707 220.8093
##  81       134.8992  75.3181673 194.4802   43.7778743 226.0205
##  82       134.8992  72.0953470 197.7031   38.8489960 230.9494
##  83       134.8992  69.0300233 200.7684   34.1609880 235.6374
##  84       134.8992  66.1011410 203.6973   29.6816490 240.1167
##  85       134.8992  63.2919558 206.5064   25.3853711 244.4130
##  86       134.8992  60.5888918 209.2095   21.2513914 248.5470
##  87       134.8992  57.9807601 211.8176   17.2625982 252.5358
##  88       134.8992  55.4582101 214.3402   13.4046908 256.3937
##  89       134.8992  53.0133321 216.7851    9.6655726 260.1328
##  90       134.8992  50.6393647 219.1590    6.0349027 263.7635
##  91       134.8992  48.3304739 221.4679    2.5037590 267.2946
##  92       134.8992  46.0815845 223.7168   -0.9356205 270.7340
##  93       134.8992  43.8882484 225.9101   -4.2900386 274.0884
##  94       134.8992  41.7465414 228.0519   -7.5654967 277.3639
##  95       134.8992  39.6529807 230.1454  -10.7673215 280.5657
##  96       134.8992  37.6044583 232.1939  -13.9002663 283.6987
##  97       134.8992  35.5981866 234.2002  -16.9685940 286.7670
##  98       134.8992  33.6316546 236.1667  -19.9761451 289.7745
##  99       134.8992  31.7025904 238.0958  -22.9263942 292.7248
## 100       134.8992  29.8089306 239.9895  -25.8224970 295.6209
## 101       134.8992  27.9487947 241.8496  -28.6673294 298.4657
## 102       134.8992  26.1204627 243.6779  -31.4635219 301.2619
## 103       134.8992  24.3223572 245.4760  -34.2134870 304.0119
## 104       134.8992  22.5530267 247.2454  -36.9194444 306.7178
## 105       134.8992  20.8111325 248.9873  -39.5834417 309.3818
## 106       134.8992  19.0954366 250.7030  -42.2073722 312.0058
## 107       134.8992  17.4047911 252.3936  -44.7929913 314.5914
## 108       134.8992  15.7381300 254.0603  -47.3419295 317.1403
## 109       134.8992  14.0944605 255.7039  -49.8557051 319.6541
## 110       134.8992  12.4728566 257.3255  -52.3357343 322.1341
## 111       134.8992  10.8724527 258.9259  -54.7833409 324.5817
## 112       134.8992   9.2924385 260.5060  -57.1997640 326.9982
## 113       134.8992   7.7320540 262.0663  -59.5861662 329.3846
## 114       134.8992   6.1905853 263.6078  -61.9436392 331.7420
## 115       134.8992   4.6673606 265.1310  -64.2732102 334.0716
## 116       134.8992   3.1617472 266.6367  -66.5758473 336.3742
## 117       134.8992   1.6731479 268.1253  -68.8524634 338.6509
## 118       134.8992   0.2009986 269.5974  -71.1039214 340.9023
## 119       134.8992  -1.2552341 271.0536  -73.3310372 343.1294
## 120       134.8992  -2.6960558 272.4945  -75.5345838 345.3330
## 121       134.8992  -4.1219455 273.9203  -77.7152940 347.5137
## 122       134.8992  -5.5333582 275.3318  -79.8738633 349.6723
## 123       134.8992  -6.9307259 276.7291  -82.0109528 351.8094
## 124       134.8992  -8.3144598 278.1129  -84.1271913 353.9256
## 125       134.8992  -9.6849514 279.4833  -86.2231773 356.0216
## 126       134.8992 -11.0425738 280.8410  -88.2994815 358.0979
## 127       134.8992 -12.3876827 282.1861  -90.3566481 360.1550
## 128       134.8992 -13.7206180 283.5190  -92.3951967 362.1936
## 129       134.8992 -15.0417043 284.8401  -94.4156239 364.2140
## 130       134.8992 -16.3512521 286.1497  -96.4184044 366.2168
## 131       134.8992 -17.6495586 287.4480  -98.4039928 368.2024
## 132       134.8992 -18.9369084 288.7353 -100.3728244 370.1712
## 133       134.8992 -20.2135742 290.0120 -102.3253163 372.1237
## 134       134.8992 -21.4798178 291.2782 -104.2618688 374.0603
## 135       134.8992 -22.7358903 292.5343 -106.1828659 375.9813
## 136       134.8992 -23.9820329 293.7804 -108.0886766 377.8871
## 137       134.8992 -25.2184775 295.0169 -109.9796554 379.7781
## 138       134.8992 -26.4454471 296.2438 -111.8561434 381.6545
## 139       134.8992 -27.6631561 297.4616 -113.7184687 383.5169
## 140       134.8992 -28.8718112 298.6702 -115.5669471 385.3653
## 141       134.8992 -30.0716113 299.8700 -117.4018831 387.2003
## 142       134.8992 -31.2627484 301.0611 -119.2235699 389.0220
## 143       134.8992 -32.4454072 302.2438 -121.0322906 390.8307
## 144       134.8992 -33.6197664 303.4182 -122.8283180 392.6267
#Lamda Optimum Holt Winter
sesopt<- HoltWinters(train.ts, gamma = FALSE, beta = FALSE,alpha = NULL)
sesopt
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = train.ts, alpha = NULL, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.9999472
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 134.8996
plot(sesopt)

#ramalan
ramalanopt<- forecast(sesopt, h=72)
ramalanopt
##     Point Forecast       Lo 80    Hi 80        Lo 95    Hi 95
##  73       134.8996 115.0674726 154.7317  104.5689903 165.2302
##  74       134.8996 106.8534855 162.9457   92.0067810 177.7924
##  75       134.8996 100.5505721 169.2486   82.3673068 187.4318
##  76       134.8996  95.2369368 174.5622   74.2408029 195.5584
##  77       134.8996  90.5555141 179.2436   67.0811847 202.7180
##  78       134.8996  86.3231752 183.4760   60.6083810 209.1908
##  79       134.8996  82.4311322 187.3680   54.6560148 215.1431
##  80       134.8996  78.8085029 190.9907   49.1156814 220.6835
##  81       134.8996  75.4060523 194.3931   43.9120822 225.8871
##  82       134.8996  72.1879323 197.6112   38.9903924 230.8088
##  83       134.8996  69.1270807 200.6721   34.3092238 235.4899
##  84       134.8996  66.2024725 203.5967   29.8364216 239.9627
##  85       134.8996  63.3973878 206.4018   25.5464147 244.2527
##  86       134.8996  60.6982700 209.1009   21.4184703 248.3807
##  87       134.8996  58.0939467 211.7052   17.4355014 252.3637
##  88       134.8996  55.5750805 214.2241   13.5832281 256.2159
##  89       134.8996  53.1337734 216.6654    9.8495710 259.9496
##  90       134.8996  50.7632737 219.0359    6.2242046 263.5750
##  91       134.8996  48.4577559 221.3414    2.6982195 267.1009
##  92       134.8996  46.2121521 223.5870   -0.7361351 270.5353
##  93       134.8996  44.0220208 225.7771   -4.0856520 273.8848
##  94       134.8996  41.8834433 227.9157   -7.3563240 277.1555
##  95       134.8996  39.7929420 230.0062  -10.5534698 280.3526
##  96       134.8996  37.7474133 232.0517  -13.6818361 283.4810
##  97       134.8996  35.7440738 234.0551  -16.7456794 286.5448
##  98       134.8996  33.7804161 236.0187  -19.7488347 289.5480
##  99       134.8996  31.8541715 237.9450  -22.6947717 292.4939
## 100       134.8996  29.9632797 239.8359  -25.5866411 295.3858
## 101       134.8996  28.1058628 241.6933  -28.4273151 298.2265
## 102       134.8996  26.2802035 243.5190  -31.2194200 301.0186
## 103       134.8996  24.4847266 245.3144  -33.9653650 303.7645
## 104       134.8996  22.7179828 247.0812  -36.6673665 306.4665
## 105       134.8996  20.9786352 248.8205  -39.3274690 309.1266
## 106       134.8996  19.2654476 250.5337  -41.9475633 311.7467
## 107       134.8996  17.5772740 252.2219  -44.5294021 314.3286
## 108       134.8996  15.9130497 253.8861  -47.0746135 316.8738
## 109       134.8996  14.2717835 255.5274  -49.5847136 319.3839
## 110       134.8996  12.6525506 257.1466  -52.0611166 321.8603
## 111       134.8996  11.0544868 258.7447  -54.5051442 324.3043
## 112       134.8996   9.4767830 260.3224  -56.9180340 326.7172
## 113       134.8996   7.9186802 261.8805  -59.3009466 329.1001
## 114       134.8996   6.3794655 263.4197  -61.6549723 331.4541
## 115       134.8996   4.8584683 264.9407  -63.9811368 333.7803
## 116       134.8996   3.3550566 266.4441  -66.2804066 336.0796
## 117       134.8996   1.8686342 267.9305  -68.5536935 338.3528
## 118       134.8996   0.3986378 269.4005  -70.8018590 340.6010
## 119       134.8996  -1.0554653 270.8546  -73.0257178 342.8249
## 120       134.8996  -2.4941799 272.2933  -75.2260419 345.0252
## 121       134.8996  -3.9179843 273.7171  -77.4035628 347.2027
## 122       134.8996  -5.3273328 275.1265  -79.5589753 349.3581
## 123       134.8996  -6.7226569 276.5218  -81.6929393 351.4921
## 124       134.8996  -8.1043671 277.9035  -83.8060827 353.6052
## 125       134.8996  -9.4728543 279.2720  -85.8990033 355.6982
## 126       134.8996 -10.8284910 280.6276  -87.9722708 357.7714
## 127       134.8996 -12.1716327 281.9708  -90.0264287 359.8256
## 128       134.8996 -13.5026184 283.3018  -92.0619958 361.8612
## 129       134.8996 -14.8217725 284.6209  -94.0794679 363.8786
## 130       134.8996 -16.1294050 285.9286  -96.0793191 365.8785
## 131       134.8996 -17.4258125 287.2250  -98.0620034 367.8612
## 132       134.8996 -18.7112794 288.5104 -100.0279553 369.8271
## 133       134.8996 -19.9860779 289.7852 -101.9775914 371.7767
## 134       134.8996 -21.2504694 291.0496 -103.9113113 373.7105
## 135       134.8996 -22.5047047 292.3039 -105.8294986 375.6287
## 136       134.8996 -23.7490246 293.5482 -107.7325217 377.5317
## 137       134.8996 -24.9836607 294.7828 -109.6207346 379.4199
## 138       134.8996 -26.2088355 296.0080 -111.4944779 381.2936
## 139       134.8996 -27.4247634 297.2239 -113.3540791 383.1532
## 140       134.8996 -28.6316505 298.4308 -115.1998537 384.9990
## 141       134.8996 -29.8296957 299.6289 -117.0321056 386.8313
## 142       134.8996 -31.0190903 300.8182 -118.8511278 388.6503
## 143       134.8996 -32.2000193 301.9992 -120.6572027 390.4564
## 144       134.8996 -33.3726607 303.1718 -122.4506030 392.2498

Setelah dilakukan peramalan, akan dilakukan perhitungan keakuratan hasil peramalan. Perhitungan akurasi ini dilakukan baik pada data latih dan data uji.

Akurasi Data Latih

Perhitungan akurasi data dapat dilakukan dengan cara langsung maupun manual. Secara langsung, nilai akurasi dapat diambil dari objek yang tersimpan pada hasil SES, yaitu sum of squared errors (SSE). Nilai akurasi lain dapat dihitung pula dari nilai SSE tersebut.

#Keakuratan Metode
#Pada data training
SSE1<-ses.1$SSE
MSE1<-ses.1$SSE/length(train.ts)
RMSE1<-sqrt(MSE1)

akurasi1 <- matrix(c(SSE1,MSE1,RMSE1))
row.names(akurasi1)<- c("SSE", "MSE", "RMSE")
colnames(akurasi1) <- c("Akurasi lamda=0.2")
akurasi1
##      Akurasi lamda=0.2
## SSE        36042.09733
## MSE          500.58469
## RMSE          22.37375
SSE2<-ses.2$SSE
MSE2<-ses.2$SSE/length(train.ts)
RMSE2<-sqrt(MSE2)

akurasi2 <- matrix(c(SSE2,MSE2,RMSE2))
row.names(akurasi2)<- c("SSE", "MSE", "RMSE")
colnames(akurasi2) <- c("Akurasi lamda=0.7")
akurasi2
##      Akurasi lamda=0.7
## SSE        18725.81939
## MSE          260.08082
## RMSE          16.12702
#Cara Manual
fitted1<-ramalan.1$fitted
sisaan1<-ramalan.1$residuals
head(sisaan1)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]      NA  0.5000  1.4000  2.0200 -2.3840 -3.5072
resid1<- ramalan.1$fitted
head(resid1)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]      NA 74.9000 75.0000 75.2800 75.6840 75.2072
#Cara Manual
SSE.1=sum(sisaan1[2:length(train.ts)]^2)
SSE.1
## [1] 36042.1
MSE.1 = SSE.1/length(train.ts)
MSE.1
## [1] 500.5847
MAPE.1 = sum(abs(sisaan1[2:length(train.ts)]/train.ts[2:length(train.ts)])*
               100)/length(train.ts)
MAPE.1
## [1] 16.25704
akurasi.1 <- matrix(c(SSE.1,MSE.1,MAPE.1))
row.names(akurasi.1)<- c("SSE", "MSE", "MAPE")
colnames(akurasi.1) <- c("Akurasi lamda=0.2")
akurasi.1
##      Akurasi lamda=0.2
## SSE        36042.09733
## MSE          500.58469
## MAPE          16.25704
fitted2<-ramalan.2$fitted
sisaan2<-ramalan.2$residuals
head(sisaan2)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]       NA  0.50000  1.15000  1.24500 -3.62650 -2.68795
resid2<-ramalan.2$fitted
head(resid2)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]       NA 74.90000 75.25000 76.05500 76.92650 74.38795
SSE.2=sum(sisaan2[2:length(train.ts)]^2)
SSE.2
## [1] 18725.82
MSE.2 = SSE.2/length(train.ts)
MSE.2
## [1] 260.0808
MAPE.2 = sum(abs(sisaan2[2:length(train.ts)]/train.ts[2:length(train.ts)])*
               100)/length(train.ts)
MAPE.2
## [1] 8.354585
akurasi.2 <- matrix(c(SSE.2,MSE.2,MAPE.2))
row.names(akurasi.2)<- c("SSE", "MSE", "MAPE")
colnames(akurasi.2) <- c("Akurasi lamda=0.7")
akurasi.2
##      Akurasi lamda=0.7
## SSE       18725.819390
## MSE         260.080825
## MAPE          8.354585

Berdasarkan nilai SSE, MSE, RMSE, dan MAPE di antara kedua parameter, nilai parameter $,7 menghasilkan akurasi yang lebih baik dibanding \(\lambda=0,2\) Hal ini dilihat dari nilai masing-masing ukuran akurasi yang lebih kecil. Berdasarkan nilai MAPE-nya, hasil ini dapat dikategorikan sebagai peramalan sangat baik.

Akurasi Data Uji

Akurasi data uji dapat dihitung dengan cara yang hampir sama dengan perhitungan akurasi data latih.

selisih1<-ramalan.1$mean-testing$PowerConsumed
SSEtesting1<-sum(selisih1^2)
MSEtesting1<-SSEtesting1/length(testing)

selisih2<-ramalan.2$mean-testing$PowerConsumed
SSEtesting2<-sum(selisih2^2)
MSEtesting2<-SSEtesting2/length(testing)

selisihopt<-ramalanopt$mean-testing$PowerConsumed
SSEtestingopt<-sum(selisihopt^2)
MSEtestingopt<-SSEtestingopt/length(testing)

akurasitesting1 <- matrix(c(SSEtesting1,SSEtesting2,SSEtestingopt))
row.names(akurasitesting1)<- c("SSE1", "SSE2", "SSEopt")
akurasitesting1
##             [,1]
## SSE1    70036.07
## SSE2   242119.80
## SSEopt 273589.65
akurasitesting2 <- matrix(c(MSEtesting1,MSEtesting2,MSEtestingopt))
row.names(akurasitesting2)<- c("MSE1", "MSE2", "MSEopt")
akurasitesting2
##             [,1]
## MSE1    35018.03
## MSE2   121059.90
## MSEopt 136794.83

Selain dengan cara di atas, perhitungan nilai akurasi dapat menggunakan fungsi accuracy() dari package forecast . Penggunaannya yaitu dengan menuliskan accuracy(hasil ramalan, kondisi aktual) . Contohnya adalah sebagai berikut.

#cara lain
accuracy(ramalanopt,testing$PowerConsumed)
##                       ME     RMSE       MAE         MPE      MAPE     MASE
## Training set   0.8451091 15.38893  6.470484  -0.5405664  7.376627 1.000009
## Test set     -56.2343002 61.64297 56.442692 -85.1190438 85.270191 8.723185
##                    ACF1
## Training set 0.03294473
## Test set             NA

Pemulusan Data Musiman

Pertama impor kembali data baru untuk latihan data musiman.

#Import data
library(rio)
data2 <- import("https://raw.githubusercontent.com/DindaKhamila/mpdw/main/Data/DataTugas.csv")
data2.ts <- ts(data2$PowerConsumed)

Selanjutnya melakukan pembagian data dan mengubahnya menjadi data deret waktu.

#membagi data menjadi training dan testing
training<-data2[1:287,2]
testing<-data2[288:359,2]
training.ts<-ts(training, frequency = 13)
testing.ts<-ts(testing, frequency = 13)

Kemudian akan dilakukan eskplorasi dengan plot data deret waktu sebagai berikut.

#Membuat plot time series
plot(data2.ts, col="red",main="Plot semua data")
points(data2.ts)

plot(training.ts, col="blue",main="Plot data latih")
points(training.ts)

plot(testing.ts, col="green",main="Plot data uji")
points(testing.ts)

Metode Holt-Winter untuk peramalan data musiman menggunakan tiga persamaan pemulusan yang terdiri atas persamaan untuk level \((L_t)\), trend \((B_t)\), dan komponen seasonal / musiman \((S_t)\) dengan parameter pemulusan berupa \(\alpha\), \(\beta\), dan \(\gamma\). Metode Holt-Winter musiman terbagi menjadi dua, yaitu metode aditif dan metode multiplikatif. Perbedaan persamaan dan contoh datanya adalah sebagai berikut.

Pemulusan data musiman dengan metode Winter dilakukan menggunakan fungsi HoltWinters() dengan memasukkan argumen tambahan, yaitu gamma() dan seasonal() . Arguman seasonal() diinisialisasi menyesuaikan jenis musiman, aditif atau multiplikatif.

Winter Multiplikatif

Model multiplikatif digunakan cocok digunakan jika plot data asli menunjukkan fluktuasi musiman yang bervariasi.

Pemulusan

#Pemulusan dengan winter multiplikatif 
winter2 <- HoltWinters(training.ts,alpha=0.2,beta=0.1,gamma=0.3,seasonal = "multiplicative")
winter2$fitted
## Time Series:
## Start = c(2, 1) 
## End = c(23, 1) 
## Frequency = 13 
##                xhat     level       trend    season
##  2.000000  61.72342  78.63702  2.40539307 0.7616187
##  2.076923  95.04317  85.26410  2.82756166 1.0789121
##  2.153846 103.94384  91.19791  3.13818628 1.1018459
##  2.230769 109.50594  96.45185  3.34976143 1.0972362
##  2.307692 117.08772 101.33165  3.50276505 1.1168825
##  2.384615 119.85488 105.69615  3.58893847 1.0967177
##  2.461538 102.69950 109.62156  3.62258647 0.9068857
##  2.538462 127.06870 115.33934  3.83210563 1.0662680
##  2.615385 128.91028 115.59473  3.47443378 1.0826504
##  2.692308 106.82898 115.44652  3.11216943 0.9010641
##  2.769231 124.71472 119.68425  3.22472568 1.0146917
##  2.846154 116.79127 120.83648  3.01747612 0.9429757
##  2.923077 104.79450 122.98622  2.93070241 0.8322511
##  3.000000 104.00722 125.96631  2.93564079 0.8068708
##  3.076923 146.98104 128.03261  2.84870688 1.1230101
##  3.153846 140.02305 121.87320  1.94789509 1.1308498
##  3.230769 119.15204 106.44955  0.21074031 1.1171172
##  3.307692 103.63857  93.04452 -1.15083644 1.1278096
##  3.384615  86.84388  81.12261 -2.22794334 1.1007573
##  3.461538  63.27542  71.27376 -2.99003470 0.9266545
##  3.538462  62.28847  64.08034 -3.41037298 1.0266772
##  3.615385  55.46311  57.00991 -3.77637838 1.0418829
##  3.692308  42.88058  51.05227 -3.99450479 0.9112329
##  3.769231  46.97615  50.88103 -3.61217845 0.9938078
##  3.846154  44.17664  50.53384 -3.28567977 0.9349918
##  3.923077  41.35082  52.42967 -2.76752853 0.8326427
##  4.000000  43.08007  55.96717 -2.13702555 0.8002965
##  4.076923  60.19498  60.30773 -1.48926744 1.0234029
##  4.153846  53.03525  59.71840 -1.39927312 0.9093971
##  4.230769  54.23928  60.11477 -1.21970903 0.9209478
##  4.307692  58.66022  62.70868 -0.83834704 0.9481154
##  4.384615  61.46465  64.62101 -0.56327962 0.9595197
##  4.461538  56.40526  66.39960 -0.32909269 0.8537133
##  4.538462  66.00575  69.63018  0.02687543 0.9475816
##  4.615385  70.09506  70.77448  0.13861781 0.9884642
##  4.692308  70.38476  70.73200  0.12050761 0.9933983
##  4.769231  75.19943  70.17106  0.05236251 1.0708596
##  4.846154  81.36400  77.05916  0.73593620 1.0458758
##  4.923077  80.89569  84.20809  1.37723608 0.9452052
##  5.000000  87.12541  94.19813  2.23851594 0.9034471
##  5.076923 113.20658 105.50736  3.14558822 1.0419098
##  5.153846 108.97203 112.18367  3.49865952 0.9419938
##  5.230769 123.13005 120.61399  3.99182561 0.9881566
##  5.307692 130.27655 126.54274  4.18551854 0.9965447
##  5.384615 121.40193 118.43046  2.95573821 1.0001296
##  5.461538 102.83798 111.52709  1.96982739 0.9060862
##  5.538462 104.21078 106.64591  1.28472733 0.9655347
##  5.615385 100.18935 101.07210  0.59887363 0.9854272
##  5.692308  94.45099  96.15269  0.04704503 0.9818217
##  5.769231 107.01560  90.81159 -0.49176947 1.1848518
##  5.846154  94.11736  83.61593 -1.16215883 1.1414561
##  5.923077  88.82235  85.53451 -0.85408494 1.0489125
##  6.000000  90.39758  90.93026 -0.22910144 0.9966530
##  6.076923 106.79859  98.24690  0.52547260 1.0812598
##  6.153846 103.33539 103.56334  1.00456953 0.9882132
##  6.230769 112.79440 110.49064  1.59684269 1.0063069
##  6.307692 102.39870 115.44741  1.93283555 0.8723674
##  6.384615 109.26316 120.01705  2.19651570 0.8940347
##  6.461538  93.44637 110.70100  1.04525915 0.8362371
##  6.538462  90.17871 101.64234  0.03486705 0.8869117
##  6.615385  86.09419  94.51106 -0.68174779 0.9175618
##  6.692308  79.89330  88.79549 -1.18512939 0.9119161
##  6.769231  88.98568  84.58524 -1.48764189 1.0708574
##  6.846154  92.43789  79.47701 -1.84970086 1.1907910
##  6.923077  80.97638  73.57321 -2.25511029 1.1354253
##  7.000000  71.27885  68.06357 -2.58056324 1.0885091
##  7.076923  69.99525  64.05374 -2.72348994 1.1412843
##  7.153846  60.14204  60.03430 -2.85308517 1.0517798
##  7.230769  57.07198  57.61057 -2.81014923 1.0414514
##  7.307692  47.76616  56.03486 -2.68670567 0.8953667
##  7.384615  42.06964  56.17020 -2.40450090 0.7824624
##  7.461538  40.95979  57.63307 -2.01776385 0.7364841
##  7.538462  48.20590  61.24753 -1.45454166 0.8062134
##  7.615385  53.64323  63.78550 -1.05529014 0.8551419
##  7.692308  56.58070  65.59682 -0.76862968 0.8727794
##  7.769231  67.60942  67.30746 -0.52070225 1.0123177
##  7.846154  74.70404  67.61468 -0.43791041 1.1120518
##  7.923077  71.25872  67.03216 -0.45237096 1.0702755
##  8.000000  69.58286  66.17640 -0.49271042 1.0593629
##  8.076923  70.58492  64.13882 -0.64719685 1.1117202
##  8.153846  65.32781  62.32498 -0.76386145 1.0611862
##  8.230769  65.16236  61.70665 -0.74930805 1.0689829
##  8.307692  57.34155  61.13277 -0.73176536 0.9493477
##  8.384615  52.02739  62.09868 -0.56199729 0.8454694
##  8.461538  52.19721  64.13231 -0.30243468 0.8177552
##  8.538462  56.92977  65.78714 -0.10670893 0.8667692
##  8.615385  74.15359  80.97175  1.42242322 0.8999859
##  8.692308  87.95954  93.93800  2.57680591 0.9113580
##  8.769231 113.47519 106.85991  3.61131614 1.0271923
##  8.846154 131.69819 114.70116  4.03431023 1.1091730
##  8.923077 130.81603 119.06037  4.06679957 1.0624465
##  9.000000 132.10339 124.23479  4.17756220 1.0287436
##  9.076923 144.99744 129.16990  4.25331696 1.0867482
##  9.153846 129.04285 118.49843  2.76083798 1.0641895
##  9.230769 118.51983 108.96017  1.53092841 1.0726640
##  9.307692  98.83279 100.28850  0.51066808 0.9804921
##  9.384615  82.58717  93.38803 -0.23044522 0.8865318
##  9.461538  74.75604  88.91924 -0.65428035 0.8469504
##  9.538462  89.15481  84.85129 -0.99564715 1.0631939
##  9.615385  78.89087  77.97622 -1.58358896 1.0327026
##  9.692308  75.08164  75.48417 -1.67443543 1.0172322
##  9.769231  77.79770  74.16725 -1.63868432 1.0726491
##  9.846154  78.68173  72.36118 -1.65542229 1.1128051
##  9.923077  74.25720  70.79891 -1.64610760 1.0738133
## 10.000000  71.57923  70.59491 -1.50189625 1.0359836
## 10.076923  64.08066  70.79589 -1.33160839 0.9224980
## 10.153846  65.73906  72.48203 -1.02983352 0.9200425
## 10.230769  73.69492  78.57381 -0.31767218 0.9417142
## 10.307692  74.44729  83.69411  0.22612509 0.8871197
## 10.384615  76.12554  90.22214  0.85631527 0.8358238
## 10.461538  79.72209  97.41339  1.48980907 0.8060618
## 10.538462 102.66900 104.15787  2.01527517 0.9669960
## 10.615385 108.24446 104.50426  1.84838726 1.0177881
## 10.692308 105.49535 101.72606  1.38572796 1.0231163
## 10.769231 114.33222 105.28253  1.60280301 1.0696717
## 10.846154 124.27909 109.62782  1.87705117 1.1145620
## 10.923077 126.06475 112.60322  1.98688648 1.1001364
## 11.000000 121.94198 112.61495  1.78937012 1.0658862
## 11.076923 110.01637 112.03221  1.55215936 0.9685872
## 11.153846 115.29321 111.66067  1.35978914 1.0201093
## 11.230769 112.52290 109.80644  1.03838804 1.0151389
## 11.307692 103.27590 106.78176  0.63208100 0.9614767
## 11.384615  96.53501 106.58680  0.54937688 0.9010496
## 11.461538  94.17771 109.39243  0.77500236 0.8548598
## 11.538462 109.42880 114.19670  1.17792897 0.9484650
## 11.615385 112.21208 115.43182  1.18364762 0.9622402
## 11.692308 121.34390 114.74232  0.99633301 1.0484303
## 11.769231 123.38143 111.41907  0.56437476 1.1017828
## 11.846154 109.50938  97.95501 -0.83846856 1.1276079
## 11.923077  90.91231  86.33099 -1.91702399 1.0769819
## 12.000000  76.16771  76.07356 -2.75106420 1.0388040
## 12.076923  60.90119  67.53359 -3.32995502 0.9485629
## 12.153846  56.08126  60.66118 -3.68420007 0.9842792
## 12.230769  49.09995  54.60342 -3.92155669 0.9687874
## 12.307692  43.09108  49.29870 -4.05987287 0.9525242
## 12.384615  45.55268  52.65258 -3.31849696 0.9233510
## 12.461538  47.44530  55.90739 -2.66116677 0.8910548
## 12.538462  54.27567  59.25140 -2.06064932 0.9490289
## 12.615385  56.73827  61.74790 -1.60493449 0.9433901
## 12.692308  63.00812  64.22647 -1.19658325 0.9996546
## 12.769231  57.64217  64.24869 -1.07470359 0.9124352
## 12.846154  60.25560  63.86616 -1.00548594 0.9585580
## 12.923077  59.49353  64.45565 -0.84598802 0.9352907
## 13.000000  60.29157  65.36452 -0.67050308 0.9319498
## 13.076923  58.66271  66.94916 -0.44498820 0.8820907
## 13.153846  64.36005  69.16542 -0.17886387 0.9329362
## 13.230769  66.21270  70.73157 -0.00436219 0.9361702
## 13.307692  76.75569  69.10086 -0.16699718 1.1134687
## 13.384615  69.73669  66.58881 -0.40150206 1.0536264
## 13.461538  72.64777  72.46341  0.22610766 0.9994257
## 13.538462  84.00362  80.32434  0.98959076 1.0330777
## 13.615385  90.05434  87.12112  1.57030958 1.0153669
## 13.692308  97.69993  93.50657  2.05182338 1.0224107
## 13.769231  91.77266  97.08421  2.20440533 0.9243019
## 13.846154 104.27001 103.05954  2.58149725 0.9870218
## 13.923077 103.54011 104.75554  2.49294791 0.9654225
## 14.000000 100.69801 101.89537  1.95763599 0.9696205
## 14.076923  92.45178  98.73801  1.44613676 0.9228184
## 14.153846  93.99158  96.74864  1.10258536 0.9605560
## 14.230769  86.06417  93.89693  0.70715655 0.9097299
## 14.307692  99.04572  92.39153  0.48590039 1.0664132
## 14.384615 101.96025  87.69263 -0.03258003 1.1631326
## 14.461538  88.79266  80.49659 -0.74892580 1.1134202
## 14.538462  91.44819  82.44338 -0.47935392 1.1157113
## 14.615385  91.98467  85.45092 -0.13066505 1.0781107
## 14.692308  94.22894  90.10924  0.34823435 1.0416931
## 14.769231  91.99249  94.57982  0.76046830 0.9648858
## 14.846154  99.46217 100.52380  1.27881990 0.9770099
## 14.923077  95.41011 103.98025  1.49658285 0.9045598
## 15.000000  98.75527 106.95598  1.64449766 0.9093446
## 15.076923  88.64692  99.59284  0.74373323 0.8834956
## 15.153846  85.65815  93.82903  0.09297916 0.9120136
## 15.230769  76.91949  87.59356 -0.53986556 0.8835868
## 15.307692  81.19461  82.90708 -0.95452758 0.9907515
## 15.384615  79.23810  77.65387 -1.38439543 1.0389228
## 15.461538  81.81376  72.46975 -1.76436778 1.1571079
## 15.538462  76.32033  67.31525 -2.10338125 1.1703443
## 15.615385  69.18204  62.67922 -2.35664577 1.1468681
## 15.692308  62.15686  59.17475 -2.47142857 1.0961768
## 15.769231  55.86227  56.96662 -2.44509822 1.0245911
## 15.846154  53.77887  55.99289 -2.29796187 1.0015634
## 15.923077  49.32774  55.73596 -2.09385843 0.9195714
## 16.000000  43.93496  56.05024 -1.85304498 0.8106502
## 16.076923  45.48865  57.66726 -1.50603861 0.8099655
## 16.153846  49.16978  60.13950 -1.10821045 0.8329444
## 16.230769  50.85707  62.03995 -0.80734472 0.8305554
## 16.307692  58.15411  63.45832 -0.58477232 0.9249376
## 16.384615  57.85029  60.26708 -0.84541934 0.9735556
## 16.461538  62.83519  58.71286 -0.91629962 1.0871787
## 16.538462  62.22956  56.88867 -1.00708856 1.1135969
## 16.615385  60.57718  55.15788 -1.07945868 1.1201728
## 16.692308  59.20274  54.72526 -1.01477536 1.1022567
## 16.769231  56.91700  54.76237 -0.90958641 1.0568998
## 16.846154  57.18062  55.43912 -0.75095254 1.0455758
## 16.923077  53.74724  56.18388 -0.60138182 0.9669814
## 17.000000  50.13271  58.03399 -0.35623208 0.8691861
## 17.076923  52.54089  60.20134 -0.10387437 0.8742614
## 17.153846  54.35638  61.62083  0.04846240 0.8814172
## 17.230769  66.47512  75.38439  1.41997232 0.8655122
## 17.307692  75.91442  84.38944  2.17847997 0.8769348
## 17.384615  92.48582  93.52068  2.87375573 0.9594519
## 17.461538 110.62694 100.46221  3.28053332 1.0663583
## 17.538462 120.03439 106.00710  3.50696873 1.0960637
## 17.615385 128.04888 109.23408  3.47897047 1.1360608
## 17.692308 129.48623 111.47212  3.35487704 1.1276636
## 17.769231 117.72406 105.28759  2.40093602 1.0931904
## 17.846154 110.31040 100.54904  1.68698791 1.0789777
## 17.923077  99.57588  96.85864  1.14924936 1.0159986
## 18.000000  87.10636  94.60712  0.80917251 0.9129086
## 18.076923  86.12157  94.91102  0.75864485 0.9001972
## 18.153846 105.01359  96.90905  0.88258290 1.0738506
## 18.230769  92.68742  95.96389  0.69980896 0.9588648
## 18.307692  86.40491  90.38807  0.07224564 0.9551693
## 18.384615  85.89038  85.76902 -0.39688396 1.0060705
## 18.461538  87.96449  81.23914 -0.81018262 1.0936917
## 18.538462  81.64355  75.97350 -1.25572845 1.0926925
## 18.615385  78.42845  71.54331 -1.57317459 1.1208845
## 18.692308  65.24579  66.80684 -1.88950417 1.0050595
## 18.769231  61.75096  63.75407 -2.00583138 1.0000441
## 18.846154  61.46212  62.91799 -1.88885570 1.0070946
## 18.923077  59.35026  62.76440 -1.71532914 0.9721730
## 19.000000  56.04736  63.28113 -1.49212320 0.9070765
## 19.076923  58.91454  65.57097 -1.11392712 0.9140125
## 19.153846  70.47851  67.93303 -0.76632883 1.0493073
## 19.230769  58.40516  67.20891 -0.76210715 0.8789762
## 19.307692  61.21203  69.08507 -0.49828109 0.8924755
## 19.384615  79.08047  82.79176  0.92221654 0.9446507
## 19.461538  96.94843  93.45716  1.89653510 1.0167244
## 19.538462 105.99041 100.08489  2.36965384 1.0345116
## 19.615385 112.59799 103.98369  2.52256829 1.0571960
## 19.692308 107.34520 106.65798  2.53774069 0.9830532
## 19.769231 114.40398 109.34928  2.55309685 1.0223552
## 19.846154 114.52312 107.91081  2.15394054 1.0405068
## 19.923077 101.86054  99.43087  1.09055252 1.0133217
## 20.000000  89.77698  92.29886  0.26829549 0.9698579
## 20.076923  83.66407  86.57102 -0.33131775 0.9701341
## 20.153846  84.71991  81.48488 -0.80679993 1.0500983
## 20.230769  69.31622  76.61752 -1.21285550 0.9192564
## 20.307692  77.21588  73.18195 -1.43512697 1.0762271
## 20.384615  83.69882  79.41884 -0.66792601 1.0628298
## 20.461538  89.29675  83.32383 -0.21063391 1.0743992
## 20.538462  87.77363  83.54195 -0.16775883 1.0527674
## 20.615385  90.95418  85.81089  0.07591084 1.0590007
## 20.692308  88.25807  89.21934  0.40916502 0.9847099
## 20.769231  92.95036  94.26783  0.87309718 0.9769756
## 20.846154  89.66547  97.73047  1.13205237 0.9069713
## 20.923077  92.14847 100.52400  1.29819933 0.9049939
## 21.000000  91.06223 101.17060  1.23303934 0.8892480
## 21.076923  89.62595  98.49871  0.84254689 0.9022027
## 21.153846  94.86136  95.96597  0.50501845 0.9833149
## 21.230769  82.00039  92.47200  0.10511885 0.8857523
## 21.307692 110.32555  91.83190  0.03059704 1.2009858
## 21.384615  97.63982  86.67916 -0.48773628 1.1328252
## 21.461538  90.16142  84.10111 -0.69676797 1.0810160
## 21.538462  89.11686  82.63443 -0.77375894 1.0886408
## 21.615385  89.53742  81.71060 -0.78876600 1.1064680
## 21.692308  83.22837  80.62586 -0.81836319 1.0428640
## 21.769231  80.29864  80.41575 -0.75753774 1.0080397
## 21.846154  73.06098  79.73785 -0.74957465 0.9249599
## 21.923077  70.73654  79.47240 -0.70116139 0.8979995
## 22.000000  65.73989  78.36222 -0.74206422 0.8469436
## 22.076923  67.88228  79.14566 -0.58951303 0.8641243
## 22.153846  73.73578  79.57862 -0.48726574 0.9322862
## 22.230769  68.62788  78.76189 -0.52021222 0.8771268
## 22.307692  88.11839  79.44381 -0.39999874 1.1148044
## 22.384615  81.67868  75.11158 -0.79322273 1.0990378
## 22.461538  74.93882  71.21042 -1.10401606 1.0689297
## 22.538462  82.90342  76.76001 -0.43865553 1.0862415
## 22.615385  88.74498  80.57392 -0.01339873 1.1015938
## 22.692308  87.69494  83.09413  0.23996187 1.0523297
## 22.769231  87.32300  86.01482  0.50803493 1.0092477
## 22.846154  83.84605  89.21338  0.77708688 0.9317215
## 22.923077  81.95823  90.96800  0.87484029 0.8923747
## 23.000000  82.01817  93.60034  1.05059098 0.8665331
xhat2 <- winter2$fitted[,2]

winter2.opt<- HoltWinters(training.ts, alpha= NULL,  beta = NULL, gamma = NULL, seasonal = "multiplicative")
winter2.opt$fitted
## Time Series:
## Start = c(2, 1) 
## End = c(23, 1) 
## Frequency = 13 
##                xhat     level     trend    season
##  2.000000  61.72342  78.63702 2.4053931 0.7616187
##  2.076923 110.41830  99.80044 2.5418082 1.0789121
##  2.153846 116.82914 103.48030 2.5500845 1.1018459
##  2.230769 118.04281 105.03907 2.5428753 1.0972362
##  2.307692 122.86637 107.46628 2.5420342 1.1168825
##  2.384615 122.58657 109.23943 2.5364425 1.0967177
##  2.461538 103.01198 111.05750 2.5312183 0.9068857
##  2.538462 133.48469 122.59199 2.5966934 1.0662680
##  2.615385 115.18472 103.94919 2.4422321 1.0826504
##  2.692308  93.68209 101.56118 2.4071048 0.9010641
##  2.769231 126.30171 121.93522 2.5377669 1.0146917
##  2.846154 109.70126 113.87450 2.4606908 0.9429757
##  2.923077 101.23704 119.16117 2.4812424 0.8322511
##  3.000000  99.91631 125.66039 2.5104625 0.7795557
##  3.076923 141.91204 128.83622 2.5153014 1.0803989
##  3.153846 105.82817  93.91691 2.2430632 1.1005429
##  3.230769  50.82423  44.45940 1.8670779 1.0970883
##  3.307692  46.74646  40.06978 1.8215770 1.1158975
##  3.384615  44.52079  38.82821 1.7993006 1.0958288
##  3.461538  39.11383  40.93502 1.8015370 0.9152311
##  3.538462  51.03548  47.28664 1.8346268 1.0389691
##  3.615385  47.85185  42.67602 1.7877546 1.0761986
##  3.692308  39.58131  41.36575 1.7652247 0.9177004
##  3.769231  65.29105  63.19382 1.9111290 1.0028584
##  3.846154  61.61714  63.25204 1.8976539 0.9457779
##  3.923077  61.38784  71.52286 1.9440019 0.8355855
##  4.000000  64.01608  80.07353 1.9920480 0.7800601
##  4.076923  92.15026  87.74330 2.0333384 1.0264393
##  4.153846  63.89393  66.09785 1.8611377 0.9401837
##  4.230769  72.34142  65.41272 1.8426203 1.0756236
##  4.307692  75.84623  66.80803 1.8393673 1.1048669
##  4.384615  73.62968  65.31256 1.8151152 1.0968603
##  4.461538  63.15662  66.37447 1.8096376 0.9262659
##  4.538462  79.66212  76.28461 1.8685474 1.0193078
##  4.615385  77.48243  70.86291 1.8155301 1.0660993
##  4.692308  64.44707  65.77459 1.7653228 0.9542072
##  4.769231  71.64107  69.91745 1.7826131 0.9991773
##  4.846154 104.67983 107.41671 2.0423575 0.9563376
##  4.923077 102.20794 118.95589 2.1114218 0.8442241
##  5.000000 113.03476 141.47987 2.2598694 0.7863849
##  5.076923 159.94439 160.76416 2.3836771 0.9803648
##  5.153846 130.65804 137.45508 2.1968301 0.9355979
##  5.230769 154.03332 141.11650 2.2074811 1.0747212
##  5.307692 140.25839 125.68417 2.0791981 1.0977981
##  5.384615  78.57741  70.08079 1.6597093 1.0953006
##  5.461538  63.92426  66.48517 1.6214907 0.9385903
##  5.538462  77.71550  75.56336 1.6757186 1.0061681
##  5.615385  76.83271  71.39625 1.6332274 1.0520781
##  5.692308  68.42243  69.79213 1.6096842 0.9582729
##  5.769231  75.58015  71.01008 1.6068354 1.0408064
##  5.846154  64.81475  65.54724 1.5554221 0.9659043
##  5.923077  96.35454 110.23802 1.8691181 0.8594862
##  6.000000 111.76842 138.20925 2.0589421 0.7968194
##  6.076923 153.72170 158.37043 2.1905881 0.9574037
##  6.153846 134.05593 141.04891 2.0486891 0.9368146
##  6.230769 151.77974 141.71653 2.0386454 1.0558211
##  6.307692 125.11511 125.17136 1.9034971 0.9845780
##  6.384615 128.81376 116.95243 1.8298832 1.0844523
##  6.461538  58.90931  60.59032 1.4066899 0.9501959
##  6.538462  55.90835  54.78704 1.3542564 0.9958506
##  6.615385  62.48078  58.36473 1.3704260 1.0459632
##  6.692308  58.94086  60.17629 1.3736341 0.9576105
##  6.769231  71.47702  68.19352 1.4219487 1.0267404
##  6.846154  70.32143  67.99090 1.4101343 1.0132620
##  6.923077  60.73033  67.62820 1.3972416 0.8798254
##  7.000000  58.37300  70.81286 1.4102403 0.8082317
##  7.076923  74.61690  77.86024 1.4512356 0.9408084
##  7.153846  64.86955  67.96078 1.3686893 0.9356707
##  7.230769  70.80800  66.98402 1.3516323 1.0361795
##  7.307692  61.72014  62.06814 1.3060527 0.9739002
##  7.384615  60.54411  62.16961 1.2972925 0.9539478
##  7.461538  57.59151  60.35169 1.2746376 0.9345276
##  7.538462  66.87657  65.53314 1.3030493 1.0006043
##  7.615385  68.92351  64.54790 1.2864080 1.0469240
##  7.692308  62.55440  63.26788 1.2677441 0.9693003
##  7.769231  71.94133  68.97805 1.3000510 1.0236664
##  7.846154  72.16438  70.15541 1.2991588 1.0099338
##  7.923077  65.57074  72.98176 1.3102650 0.8826081
##  8.000000  64.57762  77.84545 1.3361068 0.8155639
##  8.076923  70.95393  75.71917 1.3109271 0.9211195
##  8.153846  66.77518  70.41777 1.2628398 0.9315655
##  8.230769  73.96246  71.03653 1.2581559 1.0230691
##  8.307692  64.77593  65.46525 1.2084898 0.9715358
##  8.384615  64.88223  67.24457 1.2126410 0.9477779
##  8.461538  63.92109  66.69240 1.1998067 0.9415084
##  8.538462  65.30253  64.38003 1.1742649 0.9961595
##  8.615385 123.69362 117.20329 1.5498751 1.0416027
##  8.692308 119.57143 120.80619 1.5648054 0.9771224
##  8.769231 141.39985 136.49356 1.6675098 1.0234421
##  8.846154 136.09720 132.77776 1.6283605 1.0125818
##  8.923077 118.71389 132.12680 1.6117844 0.8876563
##  9.000000 124.46170 151.74485 1.7427325 0.8108911
##  9.076923 152.89730 166.13233 1.8346897 0.9102817
##  9.153846  76.56900  81.08453 1.2028487 0.9305071
##  9.230769  71.70309  69.90176 1.1127760 1.0096960
##  9.307692  63.33476  64.05889 1.0621920 0.9725692
##  9.384615  61.79332  64.35835 1.0566452 0.9446353
##  9.461538  63.93384  67.30275 1.0703736 0.9350726
##  9.538462  69.34005  64.91969 1.0452590 1.0511650
##  9.615385  59.77805  56.29358 0.9749252 1.0438207
##  9.692308  69.88985  69.54655 1.0642157 0.9897903
##  9.769231  79.43779  76.90460 1.1099867 1.0182428
##  9.846154  77.69282  75.79978 1.0938798 1.0103930
##  9.923077  71.45825  78.21924 1.1035199 0.9008543
## 10.000000  74.41367  89.72171 1.1791448 0.8186245
## 10.076923  77.72358  97.39927 1.2264037 0.7880664
## 10.153846  91.13591  98.93737 1.2286705 0.9098484
## 10.230769 108.20048 107.35857 1.2809771 0.9959586
## 10.307692  98.97826 100.69802 1.2232235 0.9711249
## 10.384615 100.76611 105.05239 1.2459943 0.9479553
## 10.461538 101.49994 108.01754 1.2584967 0.9288399
## 10.538462 113.09415 108.70205 1.2543224 1.0285365
## 10.615385 101.47994  93.97751 1.1381183 1.0669113
## 10.692308  82.17086  81.13930 1.0364774 0.9999402
## 10.769231 115.68724 112.77309 1.2589922 1.0145148
## 10.846154 128.62989 125.69322 1.3437962 1.0125386
## 10.923077 118.76215 128.59055 1.3550941 0.9139371
## 11.000000 105.50471 126.48205 1.3299055 0.8254682
## 11.076923 105.05711 131.89775 1.3596189 0.7883775
## 11.153846 118.97041 128.34607 1.3239022 0.9174862
## 11.230769 109.86610 110.23035 1.1825302 0.9861167
## 11.307692  93.85622  95.22251 1.0647879 0.9747518
## 11.384615  97.21776 101.25023 1.1008802 0.9498457
## 11.461538 104.32124 111.22244 1.1653957 0.9282253
## 11.538462 121.17685 119.16480 1.2146803 1.0066238
## 11.615385 116.27684 110.24768 1.1409981 1.0438839
## 11.692308 104.75463 100.25645 1.0600405 1.0339346
## 11.769231  99.69029  96.11264 1.0221962 1.0263083
## 11.846154  52.14079  50.73254 0.6847419 1.0140714
## 11.923077  44.68833  48.40205 0.6628140 0.9108012
## 12.000000  42.27616  50.34463 0.6721209 0.8286722
## 12.076923  43.79568  55.11735 0.7019420 0.7845974
## 12.153846  51.02304  56.16398 0.7044487 0.8972121
## 12.230769  49.18704  50.30858 0.6567431 0.9651079
## 12.307692  44.45419  44.71596 0.6112955 0.9807385
## 12.384615  73.79298  76.08569 0.8349819 0.9593387
## 12.461538  74.52694  78.87244 0.8491759 0.9348398
## 12.538462  79.85905  79.41083 0.8469158 0.9950323
## 12.615385  79.81985  76.72197 0.8212023 1.0293602
## 12.692308  77.06286  74.24548 0.7972203 1.0269201
## 12.769231  62.60772  68.15200 0.7471086 0.9086870
## 12.846154  68.28326  67.13124 0.7342521 1.0061558
## 12.923077  62.36820  67.52699 0.7317903 0.9137022
## 13.000000  62.07230  73.44440 0.7695020 0.8363972
## 13.076923  66.21111  83.48686 0.8369384 0.7852008
## 13.153846  79.37329  89.06457 0.8714150 0.8825532
## 13.230769  79.49418  83.01521 0.8210846 0.9482072
## 13.307692  66.90822  64.25446 0.6786784 1.0304171
## 13.384615  60.45721  62.16631 0.6585570 0.9623134
## 13.461538  96.11921 101.92644 0.9429178 0.9343814
## 13.538462 116.61322 116.83164 1.0444566 0.9892864
## 13.615385 119.31047 115.52871 1.0273856 1.0236314
## 13.692308 114.95405 112.37995 0.9970151 1.0139101
## 13.769231  96.02801 105.09087 0.9367556 0.9056886
## 13.846154 120.64533 118.95183 1.0307451 1.0055238
## 13.923077  94.52535 101.64848 0.8974130 0.9217858
## 14.000000  73.86815  86.32536 0.7794513 0.8480376
## 14.076923  71.16224  89.23396 0.7949353 0.7904378
## 14.153846  84.69741  96.14231 0.8393942 0.8733340
## 14.230769  80.14814  87.11421 0.7676342 0.9119989
## 14.307692  86.66474  83.83990 0.7382397 1.0246707
## 14.384615  72.59860  71.33971 0.6419651 1.0085705
## 14.461538  58.52274  61.14539 0.5631597 0.9483732
## 14.538462 103.61677 104.13455 0.8716970 0.9867677
## 14.615385 114.60671 111.56528 0.9193967 1.0188650
## 14.692308 116.66193 115.26986 0.9396515 1.0038931
## 14.769231 106.75774 115.35801 0.9334591 0.9180187
## 14.846154 125.02343 126.20607 1.0055617 0.9827987
## 14.923077 103.17224 113.71780 0.9074296 0.9000832
## 15.000000  97.36198 113.56661 0.8997309 0.8505730
## 15.076923  58.74524  73.13327 0.5991419 0.7967356
## 15.153846  65.11185  75.02039 0.6085085 0.8609388
## 15.230769  61.27473  67.04950 0.5461160 0.9064897
## 15.307692  65.55593  64.97352 0.5270472 1.0008451
## 15.384615  60.12624  60.47867 0.4905261 0.9861741
## 15.461538  60.69568  60.40488 0.4864222 0.9967873
## 15.538462  62.35454  62.23243 0.4961753 0.9940368
## 15.615385  63.82615  61.96466 0.4906197 1.0219497
## 15.692308  62.05535  61.38906 0.4828657 1.0029646
## 15.769231  59.08433  63.24052 0.4928187 0.9270552
## 15.846154  66.21729  67.87023 0.5229036 0.9681862
## 15.923077  60.11475  66.35800 0.5081034 0.8990319
## 16.000000  53.47285  67.14805 0.5101538 0.7903379
## 16.076923  58.52290  72.74851 0.5471723 0.7984496
## 16.153846  65.47718  76.72040 0.5720781 0.8471353
## 16.230769  66.62689  73.33018 0.5432629 0.9019058
## 16.307692  67.28892  67.44248 0.4964946 0.9904318
## 16.384615  48.54743  48.92751 0.3582363 0.9850197
## 16.461538  54.93373  54.56573 0.3966343 0.9994789
## 16.538462  57.58049  57.59972 0.4158141 0.9925012
## 16.615385  60.15369  58.57022 0.4198480 1.0197257
## 16.692308  63.31966  62.51627 0.4454918 1.0056843
## 16.769231  60.62806  64.44656 0.4562898 0.9341356
## 16.846154  67.35433  69.34730 0.4886115 0.9644655
## 16.923077  61.29180  67.66665 0.4728358 0.8995049
## 17.000000  58.12037  72.39570 0.5037885 0.7972672
## 17.076923  61.62263  76.22064 0.5279412 0.8029155
## 17.153846  62.74798  74.06726 0.5084416 0.8413998
## 17.230769 116.25598 129.55085 0.9082408 0.8911298
## 17.307692 107.72812 113.55028 0.7852738 0.9422102
## 17.384615 113.51327 113.08293 0.7761643 0.9969627
## 17.461538 113.86711 112.51023 0.7663548 1.0052132
## 17.538462 121.13779 121.08523 0.8231421 0.9936790
## 17.615385 123.59686 119.54939 0.8059868 1.0269326
## 17.692308 119.91888 118.10819 0.7896444 1.0085875
## 17.769231  75.74866  79.93726 0.5063090 0.9416372
## 17.846154  80.45472  83.22884 0.5265645 0.9605914
## 17.923077  77.08424  84.53738 0.5322513 0.9061311
## 18.000000  72.75041  90.18477 0.5694504 0.8016201
## 18.076923  83.74677 104.11202 0.6665932 0.7992735
## 18.153846 101.33180 113.62121 0.7308997 0.8861385
## 18.230769  95.22379 108.20292 0.6861806 0.8745025
## 18.307692  71.68038  75.73749 0.4450901 0.9409024
## 18.384615  69.00669  68.92872 0.3923374 0.9954650
## 18.461538  67.08337  65.83356 0.3669750 1.0133358
## 18.538462  62.93322  63.14577 0.3447597 0.9912221
## 18.615385  66.66274  64.71588 0.3536708 1.0244844
## 18.692308  57.02169  59.89739 0.3160571 0.9469926
## 18.769231  59.36153  62.44524 0.3322874 0.9455857
## 18.846154  68.19308  70.51995 0.3885931 0.9617047
## 18.923077  66.76833  72.76301 0.4020795 0.9125709
## 19.000000  62.66264  76.50681 0.4263817 0.8145073
## 19.076923  71.78039  88.42975 0.5099889 0.8070677
## 19.153846  81.64699  92.26459 0.5341684 0.8798284
## 19.230769  67.93801  81.74200 0.4537596 0.8265391
## 19.307692  78.81309  84.41270 0.4698820 0.9284954
## 19.384615 128.05033 128.70465 0.7885720 0.9888574
## 19.461538 128.52911 126.84187 0.7692904 1.0071934
## 19.538462 120.90717 120.96819 0.7209803 0.9935738
## 19.615385 117.65304 115.42197 0.6754029 1.0133997
## 19.692308 107.50476 112.36788 0.6482807 0.9512335
## 19.769231 109.49498 113.57224 0.6523247 0.9585940
## 19.846154  96.87124  99.86016 0.5478616 0.9647759
## 19.923077  60.56365  65.70920 0.2955192 0.9175654
## 20.000000  54.58807  65.65253 0.2929579 0.8277757
## 20.076923  59.05839  72.50689 0.3406748 0.8107119
## 20.153846  64.77389  74.53739 0.3529638 0.8649164
## 20.230769  61.21711  73.47875 0.3426982 0.8292591
## 20.307692  69.58655  71.55271 0.3261991 0.9681080
## 20.384615 115.81791 116.77781 0.6527202 0.9862674
## 20.461538 111.01709 110.38641 0.6014927 1.0002630
## 20.538462  92.97116  93.73742 0.4760410 0.9868139
## 20.615385 102.54274 101.08343 0.5260019 1.0091852
## 20.692308 102.32798 106.94323 0.5647912 0.9518171
## 20.769231 109.49604 115.69791 0.6243510 0.9413163
## 20.846154 102.02398 112.64419 0.5976028 0.9009392
## 20.923077  99.99014 108.48361 0.5629996 0.9169486
## 21.000000  82.94299  98.58946 0.4869514 0.8371618
## 21.076923  72.91161  89.26494 0.4155988 0.8130148
## 21.153846  79.15197  91.30740 0.4274299 0.8628344
## 21.230769  72.73645  87.66461 0.3978298 0.8259645
## 21.307692  96.32297  94.47860 0.4444904 1.0147475
## 21.384615  78.52814  79.92789 0.3354399 0.9783813
## 21.461538  85.26220  86.86826 0.3834734 0.9771977
## 21.538462  87.88869  87.92268 0.3883527 0.9952175
## 21.615385  90.44919  88.67831 0.3910236 1.0154920
## 21.692308  83.74743  86.83855 0.3748006 0.9602594
## 21.769231  84.42882  89.66810 0.3926525 0.9374651
## 21.846154  77.85512  86.52610 0.3669472 0.8959878
## 21.923077  76.64001  84.35886 0.3485176 0.9047620
## 22.000000  63.90262  77.10518 0.2932317 0.8256321
## 22.076923  70.63541  86.32912 0.3581791 0.8148299
## 22.153846  76.23750  88.50270 0.3713813 0.8578148
## 22.230769  70.83139  84.69145 0.3409637 0.8329929
## 22.307692  87.86332  88.30605 0.3647708 0.9908932
## 22.384615  68.61199  69.24277 0.2234829 0.9877025
## 22.461538  64.60938  65.85660 0.1972322 0.9781321
## 22.538462 107.78496 107.74631 0.5004350 0.9957340
## 22.615385 108.45223 106.65374 0.4888502 1.0122233
## 22.692308  98.80731 102.09260 0.4521247 0.9635533
## 22.769231  98.65464 105.30478 0.4721969 0.9326665
## 22.846154  96.76317 107.91636 0.4877553 0.8926152
## 22.923077  89.80998 100.07809 0.4272054 0.8935845
## 23.000000  84.40495 100.49537 0.4271332 0.8363342
xhat2.opt <- winter2.opt$fitted[,2]

Peramalan

#Forecast
forecast2 <- predict(winter2, n.ahead = 49)
forecast2.opt <- predict(winter2.opt, n.ahead = 49)

Plot Deret Waktu

#Plot time series
plot(training.ts,main="Winter 0.2;0.1;0.1",type="l",col="black",
     xlim=c(1,25),pch=12)
lines(xhat2,type="l",col="red")
lines(xhat2.opt,type="l",col="blue")
lines(forecast2,type="l",col="red")
lines(forecast2.opt,type="l",col="blue")
legend("topleft",c("Actual Data",expression(paste(winter2)),
                   expression(paste(winter2.opt))),cex=0.5,
       col=c("black","red","blue"),lty=1)

Akurasi Data Latih

#Akurasi data training
SSE2<-winter2$SSE
MSE2<-winter2$SSE/length(training.ts)
RMSE2<-sqrt(MSE2)
akurasi1 <- matrix(c(SSE2,MSE2,RMSE2))
row.names(akurasi1)<- c("SSE2", "MSE2", "RMSE2")
colnames(akurasi1) <- c("Akurasi lamda=0.2")
akurasi1
##       Akurasi lamda=0.2
## SSE2       169898.46357
## MSE2          591.98071
## RMSE2          24.33065
SSE2.opt<-winter2.opt$SSE
MSE2.opt<-winter2.opt$SSE/length(training.ts)
RMSE2.opt<-sqrt(MSE2.opt)
akurasi1.opt <- matrix(c(SSE2.opt,MSE2.opt,RMSE2.opt))
row.names(akurasi1.opt)<- c("SSE2.opt", "MSE2.opt", "RMSE2.opt")
colnames(akurasi1.opt) <- c("Akurasi")
akurasi1.opt
##               Akurasi
## SSE2.opt  74942.44579
## MSE2.opt    261.12350
## RMSE2.opt    16.15932
akurasi2.train = data.frame(Model_Winter = c("Winter 1","winter2 optimal"),
                            Nilai_SSE=c(SSE2,SSE2.opt),
                            Nilai_MSE=c(MSE2,MSE2.opt),Nilai_RMSE=c(RMSE2,RMSE2.opt))
akurasi2.train
##      Model_Winter Nilai_SSE Nilai_MSE Nilai_RMSE
## 1        Winter 1 169898.46  591.9807   24.33065
## 2 winter2 optimal  74942.45  261.1235   16.15932

Akurasi Data Uji

#Akurasi Data Testing
forecast2<-data.frame(forecast2)
testing.ts<-data.frame(testing.ts)
selisih2<-testing.ts
SSEtesting2<-sum(selisih2^2)
MSEtesting2<-SSEtesting2/length(testing.ts)

forecast2.opt<-data.frame(forecast2.opt)
selisih2.opt<-testing.ts
SSEtesting2.opt<-sum(selisih2.opt^2)
MSEtesting2.opt<-SSEtesting2.opt/length(testing.ts)

Berdasarkan perhitungan di atas, metode yang paling baik digunakan adalah SES karena menghasilkan SSE, MSE, dan MAPE yang paling kecil jika dibandingkan dengan dua metode lainnya. Maka, pola yang terbentuk dari data ini adalah pola stasioner.